

NAME: ____________________________

CSE 451 Spring 2007

CSE 451 Midterm Exam

May 2, 2007

Name: _____________________________________

Student #: __________________________________

This is an open book exam worth 50 points

You have 50 minutes to complete this test
There are 10 questions.

	Question #
	Points Earned
	Max Points

	1
	
	5

	2
	
	4

	3
	
	2

	4
	
	2

	5
	
	5

	6
	
	4

	7
	
	10

	8
	
	4

	9
	
	4

	10
	
	10

	Total
	
	50

Organization:

1. [
/5 points] Which of the following instructions should only be allowed in kernel mode (indicate this by either circling KERNEL ONLY or NOT KERNEL ONLY)? Briefly justify your answer.
a. Disable all interrupts [KERNEL ONLY or NOT KERNEL ONLY]
KERNEL. Prevents hardware events from being serviced in a timely manner causing devices to malfunction. With preemption, the scheduler is not guaranteed to be notified at and-of-quantum.

b. Read the time-of-day clock [KERNEL ONLY or NOT KERNEL ONLY]
NOT KERNEL. Reading a value does not change/expose kernel state, other processes’ state, or change external hardware state.

c. Set the time-of-day clock [KERNEL ONLY or NOT KERNEL ONLY]
KERNEL. The clock is shared and no longer has a reliable value. No computation (like timers) is reliable.

d. Change the memory map [KERNEL ONLY or NOT KERNEL ONLY]
KERNEL. Changing the may give access to the kernel memory or other processes’ memory exposing data or changing data inappropriately.

e. Synchronize Multi-processor memory accesses [KERNEL ONLY or NOT KERNEL ONLY]

NOT KERNEL. This takes some possible race conditions and makes them predictable. Used for spinlocks or other synchronization. Note, however, it may have a performance penalty, but cannot cause any incorrect behavior by kernel or other processes.

2. [
/4 points] Briefly describe each of the following four items and how they are interrelated:
a. Interrupt
Interrupt: Event generated by H/W external to the processor. Causes “interrupt behavior” where CPU is put into kernel mode and a jump is made to a specific location.

b. Exception
Exception: Software generated event. Causes “interrupt behavior”

c. Trap
Trap: “expected” exception in correct program flow. Usually used to request kernel services

d. Fault
Fault: “unexpected” exception, may or may not result from correct flow. Sometimes (page fault) the state of the CPU/memory can be adjusted in order to let the instruction be restarted. Other times this causes the process to be terminated.

3. [
/2 points] Must all the General Purpose Registers be saved when handling an interrupt?
Why or why not.

Interrupts (as per lectcure definition) are hardware generated events, like device completion or timer expiration. When an interrupt occurs, the kernel will perform some operations and then restart the thread code at the point where the interrupt occurred. If the kernel did not save the registers, it would be impossible to restart the thread correctly. In essence, interrupts are “invisible”: they happen but they do not influence the behavior of the program.

4. [
/2 points] Define a monolithic kernel and compare it to a microkernel

A monolithic kernel essentially is designed to have all the system services encapsulated in one module (image) with a tight communication and sharing of structures between the individual OS components. As opposed to a microkernel which takes the different tact of providing a set of minimal functions in the kernel and implement higher level OS features in other modules (running either in user mode or kernel mode). As monolithic kernel if it can be made bug free can on average perform better than a microkernel system that has some additional communication overhead between components.

Scheduling:
5. [
/5 points] Draw the complete state diagram for kernel threads. Label each state, transition and describe what actions transpire for each transition. (Hint: start with a NEW state and a TERMINATED state with three other states in-between)
NEW (READY (RUNNING (TERMINATED
 (((
 ((
 ((
 WAITING

NEW (READY: processes creation
READY (RUNNING: Processing scheduled to execute
RUNNING (WAITING: Waiting for something to happen
RUNNING (READY: scheduling algorithm preempts process time slice
RUNNING (TERMINATED: Exit
WAITING (READY: What ever the process was waiting for has completed and now the processes is ready to run again.

6. [
/4 points] Compare the advantages and disadvantage of preemptive over a non-preemptive scheduling strategy?
The advantage of a preemptive scheduler is that it allows for more equitable sharing and response time when running multiple processes/threads. A preemptive scheduler also will not allow a CPU bound or runaway thread to essentially shut down the system.

A disadvantage of a preemptive scheduler is that there is more bookkeeping needed to handle interrupting the thread because the thread is no longer reentering the system (via a system) at well defined points.

Synchronization & Deadlocks:
7. [
/10 points] Implement a fair but safe traffic intersection. In other words, you have two roads (E-W and N-S) with cars traveling along them. (Assume that cars do not make turns, but all go straight through the intersection.) No cars can travel E-W through the intersection while cars are traveling N-S, and vice versa. Assume that cars can take an arbitrarily long time to cross the intersection (some are Jags, some are Model-Ts), and that we model this by a crossIntersection(car,direction) function. Where direction is either North, South, East, or West. Only one car can be in the intersection in a given direction at once (so, two cars can cross in opposite directions simultaneously).

Using any synchronization primitives you'd like, ensure that:

* No collisions can occur in the intersection

* Cars are not stuck forever waiting to cross the intersection.

The key to this problem is implementing a traffic light, and in particular ensuring that everyone correctly obeys the rules for yellow lights: if you're in the intersection, finish, but if you're not yet started, don't start to cross.

We model the problem as a single program, with one thread for every car

and one extra thread modeling the traffic light:

GLOBAL STATE:

enum { GREEN, YELLOW, RED } lightColor;

enum { EW = 0, NS = !EW } dir;

int numCarsInIntersection;

condition lightChanged;

condition interChanged;

EACH CAR THREAD:

enum { EW, NS } myDir;

void driveCar() {

 // wait for the light to be green in your direction

 while (dir != myDir && lightColor != GREEN)

 wait(lightChanged);

 atomicIncrement(numCarsInIntersection); // there's one more car in the

 // intersection

 crossIntersection();

 atomicDecrement(numCarsInIntersection); // and now we're through, so

 signal(interChanged);
 // let the traffic light thread know it
 // may be safe to change from YELLOW
 // to RED

}

TRAFFIC LIGHT THREAD:

void doTrafficLight() {

 dir = EW;

 color = RED;

 while(1) { // forever cycle through the lights:

 dir = !dir; // switch directions FIRST

 lightColor = GREEN; // BEFORE making the light green (or
 // else there's a race condition)

 broadcast(lightChanged);

 sleep(5000); // leave the light green for a while
 // (here, 5 seconds)

 color = YELLOW; // this stops any new cars from entering
 // the intersection

 while (numCarsInIntersection > 0)

 wait(lightChanged); // wait until the last car exits the

 // intersection

 color = RED;

 }

}

8. [
/4 points] In project #1, we asked you to track statistics about each running process, and propagate these statistics up to the parent process. At the time, we disregarded concern for multi-threaded correctness.
What race conditions could this create?
The code you implemented to increment the counters were not appropriately protected and synchronized. If two forked processes in turn fork another process, then there is a race condition to update the counters in the kernel.

How would you propose fixing them?

Synchronizing those counters (e.g. with atomic increment instructions) would suffice.

Memory Management:
9. [
/4 points] In most systems for programming considerations the first page in a processes virtual address is usually marked as invalid. Why should this be true? (Hint: think pointers)
And why isn’t this a complete solution to the problem it’s trying to solve?

The first page is often marked as invalid to catch cases where a programmer has incorrectly coded a dereference of a NULL pointer. This is an incomplete solution for all invalid pointer accesses since many other pages may be valid but for which there should be no valid pointer in the program. It is also incomplete when the dereference through NULL occurs with a large offset (say, a big field offset in a struct).

10. [
/10 points] Assume we have a system with a 32 bit virtual address, 8KB pages, and a two level page table with the top level retiring 9 bits and the second level retiring the remaining bits. Also assume each PTE is 32 bits. What is the minimum amount of memory (i.e., pages) needed to store the page table if the process itself is using exactly 108MB of contiguous virtual address space starting address 0x08000?
Justify your answer.

To help here are a few quick hexadecimal conversions
0x1000 = 4,096 = 4K

0x2000 = 8,192 = 8K

0x4000 = 16,384 = 16K

0x8000 = 32,768 = 32K
0x10000 = 65,536 = 64K
0x6C00000 = 113,246,208 = 108M

8K = 2^13. If the first level of the page table retires 9 bits, and the offset-within-a-page is 13, that leaves 10 bits left over for second level page tables. This means that the top level page table can contain 2^9 = 512 PTEs. Each second-level page table page contains 2^10 = 1024 = 1K PTEs. The used virtual address space starts at 0x8000 = 32K, or, the fifth page and runs 108M bytes beyond that to address 108M+32K. Converting that to pages gives (108M+32K)/8K = (108KK+32K)/8K = 13.5K+4 pages. Each second level page table contains 1024 PTEs mapping those pages requiring (13.5K+4)/1024 = (13.5K+4)/1K = 13.5+ pages. Rounding up to an integral number of pages, that gives 14. Including the top level page table, you get 15 pages. NOTE: if you assume that PTEs don’t necessarily point to page frames but point to arbitrary memory, you will note that 1024 PTE’s comprise just ½ of a page and the top-level page table is ¼ of a page. With the above assumption, you can fully pack ALL pages with PTEs and have room enough for the top level page directory as well within 8 pages: the number of second level PTEs to map the address space is 13.5K+4. At 4 bytes per PTE that’s 54K+16 bytes which is contained in 7 pages. There’s just not enough room for the 512 PTEs (2K) in that.

1
PAGE
11
May 2, 2007

