CSE451 Section 3

10/11/07
Aziel Epilepsia



Important dates

Oct 12, Fri: Project 1 due — 10am
— Project 2 will be posted this day also

Oct 15, Mon: HW3 due in class

Oct 24, Wed: Project 2 part 1 (thread
scheduler) due

Oct 25, Thurs: Midterm review

— Would students prefer this review in section or in
a separate event?

Oct 26, Fri: Midterm!



Goals of today

Hand back HW 2
Review commonly missed problems in HW 2

Review Memory Leaks (question asked from
HW1)

Pthreads

Sockets




HW2 Summary

 Average was 9.8 out of 12

 Many points were missed due to inefficient
code:

— i.e. 16-part case statement to handle hex
conversion

— Expectation is to be able to see where code can be
optimized by less specific routines



Problematic Problems

 These two problems from the last homework
were the most missed:

e 3.4: (Read program and explain what output
will be at Line A)

e 3.6: (Fibonacci sequence)



Problem 3.4

#include <sys/types.h>

int value = 5;
int main()
{
pid_t pid;
pid = fork();
if (pid == 0){ /*Child process*/
value += 15;
}else it (pid > 0){ /*parent process */
wait(NULL);
printf(“PARENT: value = %d”,value); /*LINE A*/
exit(0);

e Common mistake is not realizing fork() gives child process a complete copy
of parent’s memory. The global variable is NOT shared.

e Result at Line Ais that “5” is printed out. Parent’s memory space is
independent of the child’s memory space.



Problem 3.6

Problems with Fibonacci sequence code not
compiling or running.
fork() and wait() were implemented correctly, but

many programs did not compile or run as
expected.

Problem asked for students to do error checking
on args from command line, some avoided this
portion.

Some didn’t write code that prints the Fibonacci
sequence.



Notes from Marissa

e Please submit all homework code, in the
future via the online turn-in described in the
homework posting.



Topic requested by student

e Memory leaks

e Several students missed the memory leak
occurring in queue.c -> queue_remove().

e Whenever memory is allocated, a free()
command must be executed on dereferenced

data structures.
— A simple pointer change does not free memory!



Memory leaks

e A memory leak occurs when a program does not
free allocated memory that is no longer needed.

 Resultis that resources get consumed as program
continues executing, and instantiating data
structures .

e Memory is a finite resource — when it runs out
program will terminate itself or memory
segmentation fault.



free()

* free() deallocates memory in the space
pointed to by a pointer.

e Result is that memory is made available for
future program/data use.

e How to check if free occurred correctly? You
can’t read data in that address using gdb.



queue.c

boolean_t
queue_remove(queue_t q, queue_element_t *e)

{
queue_link_t oldHead;

assert(q '= NULL);

if (queue_is _empty(q))
return FALSE;

*e = g->head->e;

oldHead = g->head;
q->head = g->head->next;
free(oldHead) ;

return TRUE;



free() summary

e Pay attention to about your malloc() and free()
routines.

* When you are removing a pointer or changing
its address to NULL, free the memory it points

to first.

e Use gdb to ensure that pointers are being
freed properly.



Pthreads and project 2 brief

* Project 2 will involve creating a thread scheduler

e HW3 involves writing a program using the
Pthreads API.

e Pthreads refers to the POSIX standard (IEEE
1003.1) defining an API for thread creation and
synchronization.

— It’s a specification for thread behavior

— Not an implementation (we’ll need to make the
implementation)



Pthreads (2)

e All Pthreads programs must include a pthread.h header file.
— A variant of this will be given to you for project?2.
* When compiling Pthreads programs, use the —pthread flagin gcc

Some examples from the API:

e Types available in API:
— pthread_t tid; // Thread identifier
— pthrad_attr_t attr; // Thread attributes

e Functions available:
— pthread_attr_init(&attr); // get default attributes for thread
— pthread_create(); // create the thread
— pthread_join(); //wait for thred to exit
— pthread_exit



Threads project

* You will need to implement the following:
— Data structures to represent threads
— Routine to initialize the data structures
— Thread creation routine
— Thread destruction routine
— Mechanism for a thread to yield, letting another thread run
— Mechanism for a thread to wait for another to finish
— Simple non-preemptive thread scheduler

 All these structures and functions are defined in the
Pthreads API, we will need to implement them to meet the
spec of the project.



Pthreads For HW3

 Problem 4.9 involves writing a thread program
that outputs prime numbers to the screen

* A separate thread will be responsible for
calculating and handling the output.

e More details on Pthreads?
—man pthreads



Sockets

Sockets are endpoints for communication.

Sockets are identified by an IP address concatenated with a
portH:

— 1.e.127.0.0.1:80

Uses a client-server architecture
* C(Client sends request for connection to server port
e Server accepts request and completes connection

Processes communicating over a network possess one
socket each.

All connections consist of a unique pair of sockets.



Communicating via sockets

e A client communicates with the server by
creating a socket and connecting to the
server’s port.

e Once connection is made, client can read from
socket using normal stream 1/O statements.



Socket implementation references

For more details:
General details: man socket
Implementation: see sys/socket.h

GNU C Library Socket Tutorial
— http://www.cs.utah.edu/dept/old/texinfo/glibc-manual-0.02/library 15.html




