
1

CSE 451: Operating Systems

Security

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 2

Outline

• “Classic” security topics
– goal: safe sharing
– general principles
– Trusted Computing Base (TCB)

• Contemporary security problems
– worms
– botnets
– spyware

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 3

Safe sharing

• Protecting a non-networked PC with one user is easy
– Nobody can access the data on your computer
– Nobody can install new code
– Nobody can attack you over the network

• Sharing resources safely is hard
– Prevent some users from reading private data

• yet allow authorized users to access it
• e.g., grades, keystrokes

– Prevent some users from using too many resources
• e.g., disk space

– Prevent users from interfering with others’ programs
• spoofing displays, replacing programs with malicious code,

killing off processes…

Much of security is art, not science
• Difficult to “prove” a system secure
• Security is based on principles and best practices

– experience reveals commonly occurring types of flaws
– but clearly we need to do better…

0

20000

40000

60000

80000

100000

120000

140000

160000

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003#
C

ER
T

re
po

rt
ed

 s
ec

ur
ity

 in
ci

de
nt

s

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 5

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– start out by granting none

• run program, and see where it breaks
• add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need root just to get a small privilege

• e.g., FTP daemon requires root:
– to listen on network port < 1024
– to change between user identities after authentication

• but root also lets you read any file in filesystem

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 6

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has
changed…and there is a lot that’s relevant!

• A TLB caches access control information
– page table entry protection bits
– is this a violation of the principle?

2

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 7

“Security through Obscurity” = bad

• Security through obscurity
– “gain security” by hiding system implementation details
– should be secure even if implementation is open!

• in fact, publishing makes it more secure, since people can
scour implementation and find/fix flaws

• Counterexample: GSM cell phones
– GSM committee designed own crypto algorithm, but hid it

• “impossible to clone”
– social + reverse engineering revealed the algorithm

• it turned out to be very weak

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 8

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system

– including the keyboard device driver
• the password library
• the application that’s checking the password

– what about the compiler that compiled all of this software (!!)

• TCB = set of components (hardware, software, wetware) that
you must trust to preserve your secrets
– should be as small as possible

• public web kiosks should *not* be in your TCB
• how about your web browser?

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 9

Modern security problems

• Internet experiencing a plague of attacks
– remote exploits: attackers breaking into your system
– worms: self-replicating attack code
– botnets: armies of compromised machines
– spyware: software that tries to steal information from you

• Underlying issues
– most of our code is buggy
– the Internet was designed to be “open”

• easy to build new services, but easy to find/attack victims
– understanding security is hard

• haven’t found simple conceptual models or usable UIs
• e.g., what does the lock icon in IE really mean?

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 10

Remote exploit

• An exploitable bug in network-facing software

– e.g.: buffer overflow attack

int main(int argc, char *argv[]){

char buffer[10];

strcpy(buffer, argv[1]);

return 0;

}

• exploit this bug, smash the stack, run code of your choice

– e.g.: SQL injection attack

• typing the following into a bookstore web search form:

“book tipping point; SELECT * FROM CREDITCARDS”

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 11

Using remote exploits -- worms

• Pseudocode for a simple worm

for (i = 0.0.0.0; i < 255.255.255.255; i++) {
open network connection to IP address “i”;
if succeed {

try to exploit vulnerability x on “i”;
if succeed {

send code for self to victim and run it;
}
close connection to “i”;

}
}

• Will this worm propagate?
– how quickly?

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 12

A “better” worm

while (1) {
open network connection to random IP address “i”;
if succeed {

try to exploit vulnerability x on “i”;
if succeed {

send code for self to victim and run it;
}
close connection to “i”;

}
}

• Why is this “better”?
• How quickly will this propagate?
• How can you do even better?

3

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 13

Even better worms…

• Local scanning
– probe nearby IP addresses preferentially

• Increased scan rate ==> faster spread
– Code Red: approximately 5 scans per second
– Sapphire worm: approximately 4000 scans per second

• single UDP packet contains worm

• Sapphire worm data
– worm doubled in size every 8.5 seconds
– saturated susceptible population of ~75,000 hosts in about

5-10 minutes (!!)

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 14

Sapphire fallout

• It propagated too fast for its own good!
– no per-host damage
– but massively clogged Internet backbones with scans
– self-interference slowed its propagation rate

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 15

Using remote exploits - Botnets

• Step 1: compromise a remote computer

• Step 2: upload “botnet” software
– sits silently in the background
– gives attacker remote control of the “zombie” computer

• Step 3: repeat steps 1 and 2 10,000 times
– amass a giant “zombie” army

• Step 4: control army using botnet “controller”
– rent out time on botnet army
– use zombies to perform spam relay, click spam
– perform “denial of service” attack on a victim

• flood it with requests

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 16

Example: Phatbot

• Some of its features:
– polymorphs on install to evade anti-virus signature
– sends email probes to test for spam relay capability
– can steal windows product keys
– runs an FTP server to distribute itself to other hosts
– runs a redirection service for TCP connections

• (launders network traffic)
– can scan and spread using many exploits

• (worm-like behavior!)
– kills worms, other bots to defend turf
– kills anti-virus processes
– steals various website account passwords
– harvests email addresses for spam purposes

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 17

Recent, local example

• UW Medical Center
– some unpatched machines were compromised

• added to a botnet
– attackers used foothold to get UWMC password database
– things started to fall apart

• some key cards would no longer open operating room doors
• some computers in the ICU stopped working
• some doctors’ pagers stopped working

• Impossible to know which accounts got compromised
– 20,000 people had to changed their UW NetID passwords!
– hopefully no confidential data was taken…

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 18

Spyware

• Software that is installed that collects information and
reports it to third party
– key logger, adware, browser hijacker, …

• Installed one of two ways
– piggybacked on software you choose to download
– “drive-by” download

• your web browser has vulnerabilities
• web server can exploit by sending you bad web content

• Estimates
– majority (50-90%) of Internet-connected PCs have it
– 1 in 20 executables on the Web have it
– about 0.5% of Web pages attack you with drive-by-

downloads

4

kingsofchaos.com

• A benign web site for an online game
– earns revenue from ad networks by showing banners
– but, it relinquishes control of the ad content

kingsofchaos.com

• A benign web site for an online game
– earns revenue from ad networks by showing banners
– but, it relinquishes control of the ad content

banner ad from
adworldnetwork.com

(a legitimate ad network)

inline javascript loads
HTML from ad provider

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 21

Incident

• kingsofchaos.com was given this “ad content”
<script type="text/javascript">document.write(‘
\u003c\u0062\u006f\u0064\u0079\u0020\u006f\u006e\u0055\u006f\
u0077\u0050\u006f\u0070\u0075\u0070\u0028\u0029\u003b\u0073\u
0068\u006f\u0077\u0048\u0069 …etc.

• This “ad” ultimately:
– bombarded the user with pop-up ads
– hijacked the user’s homepage
– exploited an IE vulnerability to install spyware

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 22

What’s going on?

• The advertiser was an ex-email-spammer

• His goal:
– force users to see ads from his servers
– draw revenue from ad “affiliate programs”

• Apparently earned several millions of dollars

• Why did he use spyware?
– control PC and show ads even when not on the Web

2/26/2006 © 2006 Gribble, Lazowska, Levy, Swift 23

Parting thoughts…

• Security is hard
– fundamentally an adversarial, escalating game
– we’re getting better, but so are the “bad guys”

• Our systems are insecure
– OS software one of the most complex artifacts of humankind
– no surprise it has flaws!

• Current trends
– reduce TCB to exclude OS
– develop stronger sandboxes to contain flaws

• virtual machine software (e.g., Vmware)
– program with safer languages than C

