
1

CSE 451: Operating Systems
Winter 2007

Module 4
Processes

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

Process management

• This module begins a series of topics on processes,
threads, and synchronization
– this is the most important part of the class
– there definitely will be several questions on these topics on

the midterm

• Today: processes and process management
– what are the OS units of execution?
– how are they represented inside the OS?
– how is the CPU scheduled across processes?
– what are the possible execution states of a process?

• and how does the system move between them?

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

The process

• The process is the OS’s abstraction for execution
– the unit of execution
– the unit of scheduling
– the dynamic (active) execution context

• compared with program: static, just a bunch of bytes

• Process is often called a job, task, or sequential
process
– a sequential process is a program in execution

• defines the instruction-at-a-time execution of a program

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

What’s in a process?

• A process consists of (at least):
– an address space
– the code for the running program
– the data for the running program
– an execution stack and stack pointer (SP)

• traces state of procedure calls made
– the program counter (PC), indicating the next instruction
– general-purpose processor registers and their values
– a set of OS resources

• open files, network connections, sound channels, …

• In other words, it’s all the stuff you need to run the
program
– or to re-start it, if it’s interrupted at some point

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

• There’s a data structure called the process control block
(PCB) that holds all this stuff
– The PCB is identified by an integer process ID (PID)

• OS keeps all of a process’s hardware execution state in
the PCB when the process isn’t running
– PC, SP, registers, etc.
– when a process is unscheduled, the state is transferred out of

the hardware into the PCB

• Note: It’s natural to think that there must be some
esoteric techniques being used
– fancy data structures that’d you’d never think of yourself

Wrong! It’s pretty much just what you’d think of!

The process control block

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

Process states

• Each process has an execution state, which indicates
what it is currently doing
– ready: waiting to be assigned to CPU

• could run, but another process has the CPU
– running: executing on the CPU

• is the process that currently controls the CPU
• pop quiz: how many processes can be running simultaneously?

– waiting: waiting for an event, e.g., I/O
• cannot make progress until event happens

• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state
– which state is a process in most of the time?

2

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

States of a process

running

ready

blocked

exception (I/O,
page fault, etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

You can create
and destroy
processes!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

The PCB revisited

• The PCB is a data structure with many, many fields:
– process ID (PID)
– execution state
– program counter, stack pointer, registers
– address space info
– UNIX username of owner
– scheduling priority
– accounting info
– pointers for state queues

• In linux:
– defined in task_struct (include/linux/sched.h)
– over 95 fields!!!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

A process’s address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

PCBs and hardware state

• When a process is running, its hardware state is
inside the CPU
– PC, SP, registers
– CPU contains current values

• When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the
PCB
– when the OS puts the process in the running state, it loads

the hardware registers from the values in that process’s PCB

• The act of switching the CPU from one process to
another is called a context switch
– timesharing systems may do 100s or 1000s of switches/sec.
– takes about 5 microseconds on today’s hardware

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the system
– typically one queue for each state

• e.g., ready, waiting, …
– each PCB is queued onto a state queue according to the

current state of the process it represents
– as a process changes state, its PCB is unlinked from one

queue, and linked onto another

• Once again, this is just as straightforward as it
sounds! The PCBs are moved between queues,
which are represented as linked lists. There is no
magic!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

State queues

• There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

firefox pcb emacs pcb ls pcb

cat pcb firefox pcbhead ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs!

3

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Pointer to address space descriptor

Open file list

Exit (“return”) code value

Pointers for state queues

Accounting info

Scheduling priority

List of children

Pointer to parent

uid (user id)
gid (group id)

euid (effective user id)

Program count
stack pointer

(all) register values

Process state

Process ID

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

PCBs and state queues

• PCBs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a PCB for it
– OS initializes PCB
– OS puts PCB on the correct queue

• As a process computes:
– OS moves its PCB from queue to queue

• When a process is terminated:
– PCB may hang around for a while (exit code, etc.)
– eventually, OS deallocates the PCB

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

Process creation

• New processes are created by existing processes
– creator is called the parent
– created process is called the child
– UNIX: do ps, look for PPID field
– what creates the first process, and when?

• In some systems, parent defines or donates
resources and privileges for its children
– UNIX: child inherits parent’s uid, environment, open file list,

etc.

• When child is created, parent may either wait for it to
finish, or may continue in parallel, or both!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 16

UNIX process creation

• UNIX process creation through fork() system call
– creates and initializes a new PCB
– creates a new address space
– initializes new address space with a copy of the entire

contents of the address space of the parent
– initializes kernel resources of new process with resources of

parent (e.g., open files)
– places new PCB on the ready queue

• the fork() system call “returns twice”
– once into the parent, and once into the child
– returns the child’s PID to the parent
– returns 0 to the child

• fork() = “clone me”

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 17

testparent – use of fork()
#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{

char *name = argv[0];
int pid = fork();
if (pid == 0) {
printf(“Child of %s is %d\n”, name, pid);
return 0;

} else {
printf(“My child is %d\n”, pid);
return 0;

}
}

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 18

testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

4

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

Exec vs. fork

• So how do we start a new program, instead of just
forking the old program?
– the exec() system call!
– int exec(char *prog, char ** argv)

• exec()
– stops the current process
– loads program ‘prog’ into the address space
– initializes hardware context, args for new program
– places PCB onto ready queue
– note: does not create a new process!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 20

UNIX shells

int main(int argc, char **argv)
{

while (1) {
char *cmd = get_next_command();
int pid = fork();
if (pid == 0) {

manipulate STDIN/STDOUT/STDERR fd’s
exec(cmd);
panic(“exec failed!”);

} else {
wait(pid);

}
}

}

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 21

Input/output redirection

• $./myprog <input.txt >output.txt # UNIX
– each process has an open file table
– by (universal) convention:

• 0: stdin
• 1: stdout
• 2: stderr

– a child process inherits the parent’s open file table

• So the shell…
– copies its current stdin/stdout open file entries
– opens input.txt as stdin and output.txt as stdout
– fork…
– restore original stdin/stdout

