
1

CSE 451: Operating Systems
Winter 2007

Module 24
Course Review

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

Architectural Support

• Privileged instructions
– what are they, and who gets to execute them?
– how does CPU know whether to execute them?
– why do they need to be privileged?
– what do they manipulate?

• Events
– exceptions: what generates them? trap vs. fault?
– interrupt: what generates them?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

OS Structure

• What are the major components of an OS?
• How are they organized?

– what is the difference between monolithic, layered,
microkernel OS’s?

• advantages and disadvantages?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

Processes

• What is a process? What does it virtualize?
– differences between program, process, thread?
– what is contained in process?

• what does PCB contain?
– state queues?

• which states, what transitions are possible?
• when do transitions happen?

• Process manipulation
– what does fork() do? how about exec()?
– how do shells work?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

Threads

• What is a thread?
– why are they useful?
– user level vs. kernel level threads?

• How does thread scheduling differ from process
scheduling?
– what operations do threads support?
– what happens on a thread context switch? what is saved in

TCB?
– preemptive vs. non-preemptive scheduling?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

Synchronization

• Why do we need it?
– data coordination? execution coordination?
– what are race conditions? when do they occur?
– when are resources shared? (variables, heap objects, …)

• What is mutual exclusion?
– what is a critical section?
– what are the requirements of critical sections?

• mutex, progress, bounded waiting, performance
– what are mechanisms for programming critical sections?

• locks, semaphores, monitors, condition variables

2

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

Locks and Semaphores

• What does it mean for acquire/release to be atomic?
• how can locks be implemented?

– spinlocks? interrupts? OS/thread-scheduler?
– test-and-set?
– limitations of locks?

• Semaphores
– wait vs. signal? difference between semaphore and lock?
– when do threads block on semaphores? when do they

wake?
– bounded buffers problem

• producer/consumer
– readers/writers problem

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

Process Scheduling

• Long term vs. short term
• When does scheduling happen?

– job changes state, interrupts, exceptions, job creation

• Scheduling goals?
– maximize CPU utilization
– maximize job throughput
– minimize {turnaround time | waiting time | response time}
– batch vs. interactive: what are their goals?

• What is starvation? what causes it?
• FCFS/FIFO, SPT, SRPT, priority, RR, MLFQ…

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

Memory Management

• What good is virtual memory?
• Mechanisms for implementing memory management

– physical vs. virtual addressing
– partitioning, paging, segmentation
– page tables, TLB

• Page replacement policies?
• What are overheads related to memory

management?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

Virtualizing Memory

• What is difference between a physical and virtual
address?
– fixed vs. variable paritioning?

• base/limit registers..
• internal vs. external fragmentation

• Paging
– advantages, disadvantages?
– what are page tables, PTEs?

• what are: VPN, PFN, offset? relationship to VA?
• what’s in a PTE? what are modify/reference/valid/prot bits?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Paging, TLBs

• How to reduce overhead of page table?
– how do multi-level page tables work?
– what problem does TLB solve?
– why do they work?
– how are they managed?

• software vs. hardware managed?

• Page faults
– what is one? how is it used to implement demand paging?
– what is complete sequence of steps for translating a virtual

address to a PA?
• all the way from TLB access to paging in from disk

• MM tricks
– shared memory? Mapped files? copy-on-write?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

Page Replacement

• What is page replacement algorithm?
– what application behavior does it exploit?
– when is page replacement algorithm invoked?

• Understand:
– Belady’s (optimal), FIFO, LRU, approximations of LRU, LRU

clock, working set, page fault frequency
– what is thrashing? why does it occur and when?

3

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

Disks

• Memory hierarchy and locality
• Physical disk structure

– platters, surfaces, tracks, sectors, cylinders, arms, heads

• Disk interface
– how does OS make requests to the disk?

• Disk performance
– access time = seek + rotation + transfer

• Disk scheduling
– how does it improve performance?
– FCFS, SSTF, SCAN, C-SCAN?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

Files and Directories

• What is a file
– what operations are supported?
– what characteristics do they have?
– what are file access methods?

• What is a directory
– what are they used for?
– how are they implemented?
– what is a directory entry?

• How does path name translation work?

• ACLs vs. capabilities
– matrix
– advantages and disadvantages of each

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

File system data structures

• General strategies?
– contiguous, linked, indexed?
– tradeoffs?

• What is an inode?
– how are they different than directories?
– how are inodes and directories used to do path resolution,

and find files?

• Everything about the Unix File System (UFS)

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 16

FS buffer cache

• What is a buffer cache?
– why do OS’s use them?

• What are differences between caching reads and
writes?
– write-through, write-back, write-behind?
– read-ahead?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 17

FFS, JFS, LFS

• What is FFS, how specifically does it improve over
original Unix FS?

• How about JFS, what is the key problem that it
solves, what are the basic ideas?

• How about LFS, what are the basic ideas, when does
it yield an improvement, when does it not?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 18

RAID

• Basic concepts of RAID
– stripe files across multiple disks to improve throughput
– compensate for decreased reliability with parity/ECC

• Sources of improvement as you go from RAID-0 to
RAID-5

4

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

Networking

• ISO 7-layer model
• Ethernet protocol
• IP and routing
• TCP principles (sending a long message via

postcards)
• Protocol encapsulation

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 20

RPC

• Basic idea – what does it buy you over message
passing?

• Subtopics: interface description language, stubs,
stub generation, parameter marshaling, binding,
runtime/transport, error handling, performance,
thread pools

• Transparency: when is distribution transparent, when
is it not?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 21

Distributed systems

• Loosely-coupled, closely-coupled, tightly-coupled
• Grapevine as an example, in detail

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 22

Distributed file systems

• Issues:
– Basic abstraction, naming, caching, sharing/coherency,

replication, performance

• Examples – compare and contrast:
– NFS
– AFS
– Sprite

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 23

Security

• Principals, objects, rights
• Authentication, authorization, auditing
• “Gotchas” with simple password protection
• Trusted third parties in distributed systems
• Spyware
• Confinement

