
1

CSE 451: Operating Systems
Winter 2007

Module 22
Distributed File Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

Distributed File Systems

• The most common distributed services:
– printing
– email
– files

• Basic idea of distributed file systems
– support network-wide sharing of files and devices (disks)

• Generally provide a “traditional” view
– a centralized shared local file system

• But with a distributed implementation
– read blocks from remote hosts, instead of from local disks

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

Issues

• What is the basic abstraction
– remote file system?

• open, close, read, write, …
– remote disk?

• read block, write block

• Naming
– how are files named?
– are those names location transparent?

• is the file location visible to the user?
– are those names location independent?

• do the names change if the file moves?
• do the names change if the user moves?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

• Caching
– caching exists for performance reasons
– where are file blocks cached?

• on the file server?
• on the client machine?
• both?

• Sharing and coherency
– what are the semantics of sharing?
– what happens when a cached block/file is modified
– how does a node know when its cached blocks are out of

date?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

• Replication
– replication can exist for performance and/or availability
– can there be multiple copies of a file in the network?
– if multiple copies, how are updates handled?
– what if there’s a network partition and clients work on

separate copies?

• Performance
– what is the cost of remote operation?
– what is the cost of file sharing?
– how does the system scale as the number of clients grows?
– what are the performance limitations: network, CPU, disks,

protocols, data copying?

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

Example: SUN Network File System (NFS)

• The Sun Network File System (NFS) has become a
common standard for distributed UNIX file access

• NFS runs over LANs (even over WANs – slowly)
• Basic idea

– allow a remote directory to be “mounted” (spliced) onto a
local directory

– Gives access to that remote directory and all its descendants
as if they were part of the local hierarchy

• Pretty much exactly like a “local mount” or “link” on
UNIX
– except for implementation and performance …
– no, we didn’t really learn about these, but they’re obvious ☺

2

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

• For instance:
– I mount /u4/lazowska on Node1 onto /students/foo on Node2
– users on Node2 can then access this directory as

/students/foo
– if I had a file /u4/lazowska/myfile, users on Node2 see it as

/students/foo/myfile

• Just as, on a local system, I might link
/cse/www/education/courses/451/06wi/

as
/u4/lazowska/451

to allow easy access to my web data from my home
directory

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

NFS implementation

• NFS defines a set of RPC operations for remote file
access:
– searching a directory
– reading directory entries
– manipulating links and directories
– reading/writing files

• Every node may be both a client and server

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

• NFS defines new layers in the Unix file system

System Call Interface

Virtual File System

buffer cache / i-node table

(local files) (remote files)

UFS NFS

The virtual file system (VFS) provides
a standard interface, using v-nodes as
file handles. A v-node describes either
a local or remote file.

RPCs to other (server) nodes

RPC requests from remote clients,
and server responses

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

NFS caching / sharing

• On an open, the client asks the server whether its
cached blocks are up to date.

• Once a file is open, different clients can write it and
get inconsistent data.

• Modified data is flushed back to the server every 30
seconds.

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Example: CMU’s Andrew File System (AFS)

• Developed at CMU to support all of its student
computing

• Consists of workstation clients and dedicated file
server machines (differs from NFS)

• Workstations have local disks, used to cache files
being used locally (originally whole files,
subsequently 64K file chunks) (differs from NFS)

• Andrew has a single name space – your files have
the same names everywhere in the world (differs
from NFS)

• Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

AFS caching/sharing

• Need for scaling required reduction of client-server
message traffic

• Once a file is cached, all operations are performed
locally

• On close, if the file has been modified, it is replaced
on the server

• The client assumes that its cache is up to date,
unless it receives a callback message from the server
saying otherwise
– on file open, if the client has received a callback on the file, it

must fetch a new copy; otherwise it uses its locally-cached
copy (differs from NFS)

3

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

Example: Berkeley Sprite File System

• Unix file system developed for diskless workstations
with large memories at UCB (differs from NFS, AFS)

• Considers memory as a huge cache of disk blocks
– memory is shared between file system and VM

• Files are permanently stored on servers
– servers have a large memory that acts as a cache as well

• Several workstations can cache blocks for read-only
files

• If a file is being written by more than 1 machine,
client caching is turned off – all requests go to the
server (differs from NFS, AFS)

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

Summary

• There are a number of issues to deal with:
– what is the basic abstraction
– naming
– caching
– sharing and coherency
– replication
– performance

• No right answer! Different systems make different
tradeoffs!

3/4/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

• Performance is always an issue
– always a tradeoff between performance and the semantics

of file operations (e.g., for shared files).

• Caching of file blocks is crucial in any file system
– maintaining coherency is a crucial design issue.

• Newer systems are dealing with issues such as
disconnected operation for mobile computers

