CSE 451: Operating Systems
Winter 2007

Module 2
Architectural Support for
Operating Systems

Ed Lazowska
lazowska@cs.washington.edu
570 Allen Center

Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

— 1980: 1 MHz Apple I+ == $2,000

+ 1980 also 1 MIPS VAX-11/780 ==
$120,000

— 2006: 3.0GHz Pentium D == $800

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 2

* Primary memory capacity
— same story, same reason (Moore’s Law)
+ 1972: 1MB = $1,000,000
« 1982: | remember pulling all kinds of strings to get a special
deal: 512K of VAX-11/780 memory for $30,000
« 2005:

[r— OLasembore
- e — s sl i 0 i L P
"
&
e
r 4GB vs. 2GB
e (@400MHz) = $800
2
oy 2 50 emary, 4 7 DEMME) [Add FR24.0
12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

* today:

© sy ven D) Aca iy aceessanes.) croone iy sommare, (D) Proiea sy s contom b o ca

SELECT MY MEMORY
@ e csene gy o

g O3 SR T -
nPrea]
o I s s Veckows Vinta

@ s Cimpansst 12 o 0 et Compmens

4GB vs. 2GB
(@667MHz) = $290

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

* Aside: Where does it all go?
— Facetiously: “What Gordon giveth, Bill taketh away”
— Reallistically: our expectations for what the system will do
increase relentlessly
* e.g., GUI
— “Software is like a gas — it expands to fill the available
space” — Nathan Myhrvold (1960-)

Transstors Por Die vl
Microsoft Stock Price
umnI e '}

e ¢ w

sty .

|
|
e -
= C] F/J

nwn nn e o e e e e sen

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 5

« Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
— factor of 10 every decade

— Siill exponential, but far less rapid than processor
performance

« Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 6

« Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

« Today, 1 GB (a billion bytes) costs 4, $0:50 $0.25
from Dell (except you have to buy in increments of 40
8Q.250 GB)

— =>1TB costs $1K $500 $250, 1 PB costs $1\ $500K
$250K

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

« Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

* What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

Storage Latency:
How Far Away is the Data?

Andromeda
10 9 Tape /Optical 2,000 Years
Robot
10% Disk Pluto 2 Years
100 Memory 15he

10 OnBoard Cache 10 min
2 On Chip Cache

1 Registers % My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

Archive

e gt smady, e P s il e et b 80 s Pt b S | At o Sy | Pechae by

TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC's

By JOHN MARKOFF (NTT) 64 wards

oA tn-shel¥ persenal compuers m piet cnr meesh ot 3 cost of

eches Instrate, s thalong up the eaoten

paperc oampuuter, pt together by Eaculy, techracians and o
o o §240

rmance compiatng, where the farbest macknes bave radss

lly sested n pecen daps, aeconding

it oot
0 fastest machines

The Viegeaa Trch o 3
of Teeeine comy

#o Jack Dorgarra. a

Bat the Aggle-bared nipercompeter,
second, & apeed surpassed by ooy theee

orte:d urshd mext moath af 3 Fapers omputes ndustry
cesscen, wt sble 1o compute st 741 mlion epersioes

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

Archive e N ferkiFimes

Welcome, larpeyiy

= [—

v o, e St v e 4 3 s it e S | g e | stk
Saay 26, 3000, Manday

USRS FINANCIAL DES

TECHNOLOGY; From PlayStation to Supercomputer for $50,000

By JORRS MAREORF (VT 913 wards

A prchiaps the clearest emdence yet of e congratng o of pophisseatr
puting Applcations a the Unsversity of Thnow Urhana-Champaign has
PlayStation 2

o mr e

er's sessarchen bebeve the syem
iy et ack ameag the weilds

Birle more thae 3
= of

ack ubes the open ource Livas sperating ryvenes, i that S coly hardwars engnesrng
4 plgpng the: er with high-peed Hey
pachines, bos are hobding 30 m reserve, possitly for higheresobision display appbeancn

o b b 01 ol of these thargs ot of the plainc pachageg.” ved Crg S1eflen, & seraod research seasmuit a8 the

sty workng piet B on 8

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 12

retor gl Connecting to a stereo

(AP —

1 etk 080

kAP o (L T B
o e

[rrynr—
=

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

A O

o

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 14

Lower-level architecture affects the OS
even more dramatically

* The operating system supports sharing and
protection
— multiple applications can run concurrently, sharing resources
— abuggy or malicious application can't nail other applications

or the system

* There are many approaches to achieving this

* The architecture determines which approaches are
viable (reasonably efficient, or even possible)
— includes instruction set (synchronization, 1/O, ...)
— also hardware components like MMU or DMA controllers

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

« Architectural support can vastly simplify (or
complicate!) OS tasks

— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory, in part because at that time PCs
lacked necessary hardware support

« Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

— Until very recently, Intel-based PCs still lacked support for
64-bit addressing (which has been available for a decade on
other platforms: MIPS, Alpha, IBM, etc...)

« changing rapidly due to AMD’s 64-bit architecture

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 16

Architectural features affecting OS’s

« These features were built primarily to support OS'’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection
— 1/O control operations
— interrupts and exceptions
— protected modes of execution (kernel vs. user)
— privileged instructions
— system calls (and software interrupts)

« [2006] virtualization architectures (aka Intel discovers the early
1970s)

— Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/1-
abstract.htm

— AMD: http://enterprise.amd.com/us-en/AMD-Business/Business-
Solutions/Consolidation/Virtualization.aspx

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 17

Privileged instructions

« some instructions are restricted to the OS
— known as protected or privileged instructions
¢ e.g., only the OS can:
— directly access /O devices (disks, network cards)
* why?
— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
« interrupt priority level
* why?
— halt instruction
* why?

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 18

OS protection

¢ So how does the processor know if a privileged
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode

* VAX, x86 support 4 protection modes

— mode is set by status bit in a protected processor register
* user programs execute in user mode
« OS executes in kernel mode (OS == kernel)

¢ Privileged instructions can only be executed in kernel

mode
— what happens if user mode attempts to execute a privileged
instruction?
12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

Crossing protection boundaries

* So how do user programs do something privileged?

— e.g., how can you write to a disk if you can't execute 1/O
instructions?

« User programs must call an OS procedure

— OS defines a sequence of system calls

— how does the user-mode to kernel-mode transition happen?
« There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke

— saves caller’s state (registers, mode bit) so they can be
restored

— OS must verify caller's parameters (e.g., pointers)
— must be a way to return to user mode once done

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 20

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int pumBytes)

package arguments
trap to kernel mode
user mode

kernel mode

restore app
trap handler state, return to
user mode,
save registers
find sys_read() resume
handler in
vector table

sys_read() kernel routine

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 21

System call issues

« What would happen if kernel didn’t save state?
« Why must the kernel verify arguments?

How can you reference kernel objects as arguments
or results to/from system calls?

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 22

Memory protection

« OS must protect user programs from each other
— maliciousness, ineptitude

« OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers
— are these protected?

Prog A

base and limit registers
Prog B are loaded by OS before
starting program

Prog C

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 23

More sophisticated memory protection

« coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 24

OS control flow

« After the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called
« Kernel defines handlers for each event type
— specific types are defined by the architecture
« e.g.: timer event, I/O interrupt, system call trap
— when the processor receives an event of a given type, it
« transfers control to handler within the OS
« handler saves program state (PC, regs, etc.)
+ handler functionality is invoked
« handler restores program state, returns to program

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 25

Interrupts and exceptions

« Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
« e.g., a page fault, or an attempted write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
* e.g., device finishes I/O
« e.g., timer fires

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 2%

I/O control

e Issues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped I/O
— how does the kernel notice an I/O has finished?
« polling
 interrupts
« Interrupts are basis for asynchronous I/O
— device performs an operation asynchronously to CPU
— device sends an interrupt signal on bus when done

— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types

+ who populates the vector table, and when?

— CPU switches to address indicated by vector index specified
by interrupt signal

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 27

Timers

* How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

« “guantum” — how big should it be set?
— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
« very interesting policy question: we’ll dedicate a class to it
* Should the timer be privileged?
— for reading or for writing?

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 28

Synchronization

« Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
« Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
+ read-modify-write
+ test-and-set
« load-linked store-conditional

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 29

“Concurrent programming”

« Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

¢ Arises from the architecture

« Can be sugar-coated, but cannot be totally
abstracted away

¢ Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

12/31/2006 ©2007 Gribble, Lazowska, Levy, Zahorjan 30

Some questions

* Why wouldn’t you want a user program to be able to
access an I/O device (e.g., the disk) directly?

* OK, so what keeps this from happening? What
prevents user programs from directly accessing the
disk?

* So, how does a user program cause disk 1/O to
occur?

« What prevents a user program from scribbling on the
memory of another user program?

* What prevents a user program from scribbling on the
memory of the operating system?

« What prevents a user program from running away
with the CPU?

12/31/2006 © 2007 Gribble, Lazowska, Levy, Zahorjan 31

