
1

CSE 451: Operating Systems
Winter 2007

Module 17
Berkeley Log-Structured File System

+ File System Summary

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

More on caching (applies both to FS and FFS)

• Cache (often called buffer cache) is just part of 
system memory

• It’s system-wide, shared by all processes
• Need a replacement algorithm

– LRU usually

• Even a small (4MB) cache can be very effective
• Today’s huge memories => bigger caches => even 

higher hit ratios
• Many file systems “read-ahead” into the cache, 

increasing effectiveness even further

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

Caching writes, vs. reads

• Some applications assume data is on disk after a 
write (seems fair enough!)

• And the file system itself will have (potentially costly!) 
consistency problems if a crash occurs between 
syncs – i-nodes and file blocks can get out of whack

• Approaches:
– “write-through” the buffer cache (synchronous – slow), or
– “write-behind”: maintain queue of uncommitted blocks, 

periodically flush (unreliable – this is the sync solution), or
– NVRAM: write into battery-backed RAM (expensive) and 

then later to disk

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

So, you can make things better, but …

• As caches get big, most reads will be satisfied from 
the cache

• No matter how you cache write operations, though, 
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic
• If you eventually put blocks (i-nodes, file content 

blocks) back where they came from on the disk, then 
even if you schedule disk writes cleverly, there’s still 
going to be a lot of head movement (which dominates 
disk performance) – so you simply won’t be utilizing 
the disk effectively

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

LFS inspiration

• Suppose, instead, what you wrote to disk was a log of 
changes made to files
– log includes modified data blocks and modified metadata 

blocks
– buffer a huge block (“segment”) in memory – 512K or 1M
– when full, write it to disk in one efficient contiguous transfer

• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk contains a single big long log of changes, 
consisting of threaded segments

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

LFS basic approach

• Use the disk as a log
• A log is a data structure that is written only at one 

end
• If the disk were managed as a log, there would be 

effectively no seeks
• The “file” is always added to sequentially
• New data and metadata (i-nodes, directories) are 

accumulated in the buffer cache, then written all at 
once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk write throughput



2

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

LFS vs. UNIX File System or FFS

file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

i-node

directory

data

i-node map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

LFS challenges

• Locating data written in the log
– FFS places files in a well-known location, LFS writes data “at 

the end of the log”

• Even locating i-nodes!
– in LFS, i-nodes too go in the log!

• Managing free space on the disk
– disk is finite, and therefore log must be finite
– so cannot just keep appending to log, ad infinitum!

• need to recover deleted blocks in old part of log
• need to fill holes created by recovered blocks

• (Note: Reads are the same as FS/FFS once you find 
the i-node – and writes are a ton faster)

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

Locating data and i-nodes

• LFS uses i-nodes to locate data, just like FS/FFS
• LFS appends i-nodes to end of log, just like data

– makes them hard to find

• Solution
– use another level of indirection: “i-node maps”

• i-node maps map file #s (i-node #s) to i-node location
– location of i-node map blocks are kept in a checkpoint region

• checkpoint region has a fixed location
– cache i-node maps in memory for performance

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

• Reads are no different than in UNIX File System or 
FFS, once we find the i-node for a file
– using the i-node map, which is cached in memory, find the i-

node, which gets you to the blocks

• Every write causes new blocks to be added to the 
current “segment buffer” in memory
– when segment is full, it is written to disk

• Over time, segments in the log become fragmented 
as we replace old blocks of files with new blocks
– we can “garbage collect” segments with little “live” data and 

recover the disk space

Free space management

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Segment cleaning

• Log is divided into (large) segments
• Segments are “threaded” on disk (linked list)

– segments can be anywhere

• Reclaim space by cleaning segments
– read segment
– copy live data to end of log
– now have free segment you can reuse!

• Cleaning is an issue
– costly overhead, when do you do it?

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

Detail: Cleaning

• The major problem for a LFS is cleaning, i.e., 
producing contiguous free space on disk

• A cleaner daemon “cleans” old segments, i.e., takes 
several non-full segments and compacts them, 
creating one full segment, plus free space

• The cleaner chooses segments on disk based on:
– utilization: how much is to be gained by cleaning them
– age: how likely is the segment to change soon anyway



3

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

LFS summary

• As caches get big, most reads will be satisfied from 
the cache

• No matter how you cache write operations, though, 
they are eventually going to have to get back to disk

• Thus, most disk traffic will be write traffic
• If you eventually put blocks (i-nodes, file content 

blocks) back where they came from, then even if you 
schedule disk writes cleverly, there’s still going to be 
a lot of head movement (which dominates disk 
performance)

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

• Suppose, instead, what you wrote to disk was a log of 
changes made to files
– log includes modified data blocks and modified metadata 

blocks
– buffer a huge block (“segment”) in memory – 512K or 1M
– when full, write it to disk in one efficient contiguous transfer

• right away, you’ve decreased seeks by a factor of 1M/4K = 250

• So the disk is just one big long log, consisting of 
threaded segments

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

• What happens when a crash occurs?
– you lose some work
– but the log that’s on disk represents a consistent view of the 

file system at some instant in time

• Suppose you have to read a file?
– once you find its current i-node, you’re fine
– i-node maps provide a level of indirection that makes this 

possible
• details aren’t that important

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 16

• How do you prevent overflowing the disk (because 
the log just keeps on growing)?
– segment cleaner coalesces the active blocks from multiple 

old log segments into a new log segment, freeing the old log 
segments for re-use

• Again, the details aren’t that important

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 17

Tradeoffs

• LFS wins, relative to FFS
– metadata-heavy workloads

• small file writes
• deletes

(metadata requires an additional write, and FFS does this 
synchronously)

• LFS loses, relative to FFS
– many files are partially over-written in random order

• file gets splayed throughout the log

• LFS vs. JFS
– JFS is “robust” like LFS, but data must eventually be written 

back “where it came from” so disk bandwidth is still an issue

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 18

LFS history

• Designed by Mendel Rosenblum and his advisor John 
Ousterhout at Berkeley in 1991
– Rosenblum went on to become a Stanford professor and to co-

found VMware, so even if this wasn’t his finest hour, he’s OK
• Ex-Berkeley student Margo Seltzer (faculty at Harvard) 

published a 1995 paper comparing and contrasting LFS with 
conventional FFS, and claiming poor LFS performance in some 
realistic circumstances

• Ousterhout published a “Critique of Seltzer’s LFS 
Measurements,” rebutting her arguments

• Seltzer published “A Response to Ousterhout’s Critique of LFS 
Measurements,” rebutting the rebuttal

• Ousterhout published “A Response to Seltzer’s Response,”
rebutting the rebuttal of the rebuttal



4

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

• Moral of the story
– If you’re going to do OS research, you need a thick skin
– Very difficult to predict how a FS will be used

• So it’s hard to generate reasonable benchmarks, let alone a 
reasonable FS design

– Very difficult to measure a FS in practice
• depends on a HUGE number of parameters, involving both 

workload and hardware architecture

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 20

Summary
UFS

•••

•••

Hardware Device

inodes

data blocks

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 21

FFS

•••

•••

•••

Low throughput addressed by:

• larger blocks

• cylinder groups

• hardware awareness

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 22

JFS

Journal 
+

some 
file system

• …
• Start t
• Alloc inode 1067
• Write inode 1067 w/

[data]
• Write block 22731 w/

[data]
• Commit t
• ….

Example: file creation

Main
memory
cache

App
requests

If data block updates are not
journaled, after a crash files may

have garbage blocks

Long post-crash boot times 
addressed by:

• transactional journal of 
changes

• propagated back to “real” file 
system asynchronously

2/19/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 23

LFS

file1

Segments

file1file 2

inode maps

Main
memory
cache

Write throughput addressed by:

• the file system is a log


