
A Survey on VirtualizationA Survey on Virtualization
TechnologiesTechnologies

Virtualization is Virtualization is ““HOTHOT””

 Microsoft acquires Connectix Corp.Microsoft acquires Connectix Corp.
 EMC acquires VMwareEMC acquires VMware
 Veritas acquires EjascentVeritas acquires Ejascent
 IBM, already a pioneerIBM, already a pioneer
 Sun working hard on itSun working hard on it
 HP picking upHP picking up
Virtualization is HOT!!!Virtualization is HOT!!!

Veritas/EjascentVeritas/Ejascent

 Veritas Cluster ServerVeritas Cluster Server
 Integrates the Integrates the EjascentEjascent’’s s ApplicationApplication

Virtualization softwareVirtualization software
 Enables cluster server users to moveEnables cluster server users to move

data seamlessly across applicationsdata seamlessly across applications
without disrupting the transaction statewithout disrupting the transaction state

Virtualization: What is it, really?Virtualization: What is it, really?

 Real vs. VirtualReal vs. Virtual
 Similar essence, effectSimilar essence, effect
 ””FormallyFormally”” differentdifferent

 A framework that A framework that combinescombines or or dividesdivides [computing] [computing]
resources to present a resources to present a transparenttransparent view of one or more view of one or more
environmentsenvironments
 Hardware/software partitioning (or aggregation)Hardware/software partitioning (or aggregation)
 Partial or complete machine simulationPartial or complete machine simulation
 Emulation (again, can be partial or complete)Emulation (again, can be partial or complete)
 Time-sharing (in fact, sharing in general)Time-sharing (in fact, sharing in general)
 In general, can be In general, can be M-to-NM-to-N mapping (M mapping (M ““realreal”” resources, N resources, N

““virtualvirtual”” resources) resources)
 Examples: VM (M-N), Grid Computing (M-1) , Multitasking (1-N)Examples: VM (M-N), Grid Computing (M-1) , Multitasking (1-N)

Virtualization: Why?Virtualization: Why?

 Server consolidationServer consolidation
 Application ConsolidationApplication Consolidation
 SandboxingSandboxing
 Multiple execution environmentsMultiple execution environments
 Virtual hardwareVirtual hardware
 DebuggingDebugging
 Software migration (Mobility)Software migration (Mobility)
 Appliance (software)Appliance (software)
 Testing/Quality AssuranceTesting/Quality Assurance

Virtual Machine Implementation:Virtual Machine Implementation:
IssuesIssues

 Only one Only one ““barebare”” machine interface machine interface
 Virtualizable ArchitectureVirtualizable Architecture

““A virtualizable architecture allows any instruction inspecting/modifyingA virtualizable architecture allows any instruction inspecting/modifying
machine state to be trapped when executed in any but the mostmachine state to be trapped when executed in any but the most
privileged modeprivileged mode””

- Popek & Goldberg (1974)- Popek & Goldberg (1974)
 X86 is not virtualizableX86 is not virtualizable (Vanderpool??) (Vanderpool??)

 Hard to optimize [from below]Hard to optimize [from below]
 Unused memory pagesUnused memory pages
 Idle CPUIdle CPU

 Difficult to know what NOT to doDifficult to know what NOT to do
 Example: Page faults (VMM), System Calls (OS level)Example: Page faults (VMM), System Calls (OS level)

ExampleExample

 X86 Instruction: STR (gets security state)X86 Instruction: STR (gets security state)
 Value retrieved has the Requester PrivilegeValue retrieved has the Requester Privilege

LevelLevel
 Thus, behavior depends on the privilege levelThus, behavior depends on the privilege level
ProblematicProblematic

 X86 has at least 17 such instructionsX86 has at least 17 such instructions

HARDWARE

KERNEL

USER LEVEL LIBRARIES

APPLICATIONS

API Calls

System Calls

Instructions

User Space

Kernel Space

Machines: Stacked ArchitectureMachines: Stacked Architecture

Possible Abstraction LevelsPossible Abstraction Levels

 Instruction Set ArchitectureInstruction Set Architecture
 Emulate the ISA in softwareEmulate the ISA in software

 Interprets, translates to host ISA (if required)Interprets, translates to host ISA (if required)
 Device abstractions implemented in softwareDevice abstractions implemented in software
 InefficientInefficient

 Optimizations: Caching? Code reorganization?Optimizations: Caching? Code reorganization?
 Applications: Debugging, Teaching, multiple OSApplications: Debugging, Teaching, multiple OS

 Hardware Abstraction Layer (HAL)Hardware Abstraction Layer (HAL)
 Ring CompressionRing Compression
 Between Between ““real machinereal machine”” and and ““emulatoremulator”” (maps to real hardware) (maps to real hardware)
 Handling non-virtualizable architectures (scan, insert code?)Handling non-virtualizable architectures (scan, insert code?)
 Applications: Fast and usable, virtual hardware (in above too),Applications: Fast and usable, virtual hardware (in above too),

consolidation, migrationconsolidation, migration

Possible Abstraction Levels Possible Abstraction Levels contcont’’dd

 Operating System LevelOperating System Level
 Virtualized SysCall Interface (may be same)Virtualized SysCall Interface (may be same)
 May or may not provide all the device abstractionsMay or may not provide all the device abstractions
 Easy to manipulate (create, configure, destroy)Easy to manipulate (create, configure, destroy)

 Library (user-level API) LevelLibrary (user-level API) Level
 Presents a different subsystem API to applicationPresents a different subsystem API to application
 Complex implementation, if kernel API is limitedComplex implementation, if kernel API is limited
 User-level device driversUser-level device drivers

 Application (Programming Language) LevelApplication (Programming Language) Level
 Virtual architecture (ISA, registers, memory, Virtual architecture (ISA, registers, memory, ……))
 Platform-independence (Platform-independence ( highly portable) highly portable)
 Less control on the system (extremely high-level)Less control on the system (extremely high-level)

Overall PictureOverall Picture

****************************Degree ofDegree of
IsolationIsolation

********************Ease of ImplEase of Impl

**************************FlexibilityFlexibility

****************************PerformancePerformance

PLPLLibraryLibraryOSOSHALHALISAISA

(more stars are better)

Instruction Set Architecture LevelInstruction Set Architecture Level
VirtualizationVirtualization

 TechnologiesTechnologies
 Emulation: Translates guest ISA to native ISAEmulation: Translates guest ISA to native ISA
 Emulates h/w specific IN/OUT instructions to mimic aEmulates h/w specific IN/OUT instructions to mimic a

devicedevice
 Translation Cache: Optimizes emulation by makingTranslation Cache: Optimizes emulation by making

use of similar recent instructionsuse of similar recent instructions
 Code rearrangementCode rearrangement
 Speculative scheduling (alias hardware)Speculative scheduling (alias hardware)

 IssuesIssues
 Efficient Exception handlingEfficient Exception handling
 Self-modifying codeSelf-modifying code

ISA Level Virtualization: ExamplesISA Level Virtualization: Examples

 Bochs: Open source x86 emulatorBochs: Open source x86 emulator
 Emulates whole PC environmentEmulates whole PC environment

 x86 processor and most of the hardware (VGA, disk, keyboard, mouse, x86 processor and most of the hardware (VGA, disk, keyboard, mouse, ……))
 Custom BIOS, emulation of power-up, rebootCustom BIOS, emulation of power-up, reboot
 Host Host ISAsISAs: x86, PowerPC, Alpha, Sun, and MIPS: x86, PowerPC, Alpha, Sun, and MIPS

 Crusoe (Transmeta)Crusoe (Transmeta)
 ““Code morphing engineCode morphing engine”” –– dynamic x86 emulator on VLIW processor dynamic x86 emulator on VLIW processor
 16 MB 16 MB ““translation cachetranslation cache””
 Shadow registers: Enables easy exception handlingShadow registers: Enables easy exception handling

 QEMU:QEMU:
 Full ImplementationFull Implementation

 Multiple target Multiple target ISAsISAs: x86, ARM, PowerPC, : x86, ARM, PowerPC, SparcSparc
 Supports self-modifying codeSupports self-modifying code
 Full-software and simulated (using Full-software and simulated (using mmapmmap()) MMU()) MMU

 User-space only: Useful for Cross-compilation and cross-debuggingUser-space only: Useful for Cross-compilation and cross-debugging

0
VMM

Virtualization through RingVirtualization through Ring
CompressionCompression

1
2

3 userVirtual Machine
Monitor (VMM) runs
at ring 0

Kernel(s) run at
ring 1

Requires that CPU
is virtualizable

kernel

HAL Virtualization TechniquesHAL Virtualization Techniques

 Standalone vs. HostedStandalone vs. Hosted
 DriversDrivers
 Host and VMM worldsHost and VMM worlds
 I/OI/O

 Protection RingsProtection Rings
 Multilevel privilege domainsMultilevel privilege domains

 Handling Handling ““silentsilent”” fails fails
 Scan code andScan code and

insert/replace artificialinsert/replace artificial
trapstraps

 Cache results to optimizeCache results to optimize

Classification of processorClassification of processor
architecturesarchitectures

Strictly Strictly virtualizablevirtualizable processor architecturesprocessor architectures
 Can build a VMM based on trap emulation exclusivelyCan build a VMM based on trap emulation exclusively

No software running inside the VM cannot determine the presence ofNo software running inside the VM cannot determine the presence of
the VMM (short of timing attacks)the VMM (short of timing attacks)

 Examples: IBM S/390, DEC Compaq Intel Alpha, PowerPCExamples: IBM S/390, DEC Compaq Intel Alpha, PowerPC

(Non-strictly) (Non-strictly) virtualizablevirtualizable processor architecturesprocessor architectures
 Trap emulation alone is not sufficient and/or not completeTrap emulation alone is not sufficient and/or not complete

E.g. instructions have different semantics at various levels (sufficient)E.g. instructions have different semantics at various levels (sufficient)
E.g Some software sequences can determine the presence of the VMME.g Some software sequences can determine the presence of the VMM
(complete)(complete)

 Examples: IA-32, IA-64Examples: IA-32, IA-64

Non Non virtualizable virtualizable processor architecturesprocessor architectures
 Basic component missing (e.g. MMU, Basic component missing (e.g. MMU, ……))

VMware ArchitectureVMware Architecture

VMware: I/O VirtualizationVMware: I/O Virtualization

 VMM does not have access to I/OVMM does not have access to I/O
 I/O in I/O in ““host worldhost world””

 Low level I/O instructions (issued by guest OS) areLow level I/O instructions (issued by guest OS) are
merged to high-level I/O system callsmerged to high-level I/O system calls

 VM Application executes I/O SysCallsVM Application executes I/O SysCalls
 VM Driver works as the communication linkVM Driver works as the communication link

between VMM and VM Applicationbetween VMM and VM Application
 World switch needs to World switch needs to ““savesave”” and and ““restorerestore””

machine statemachine state
 Additional techniques to increase efficiencyAdditional techniques to increase efficiency

