A Survey on Virtualization
Technologies

Virtualization is "HOT"”

Microsoft acquires Connectix Corp.
EMC acquires VMware
Veritas acquires Ejascent
IBM, already a pioneer
Sun working hard on it
HP picking up
=>

Veritas/Ejascent

Veritas Cluster Server

= Integrates the Ejascent’s Application
Virtualization software

= Enables cluster server users to move
data seamlessly across applications
without disrupting the transaction state

Virtualization: What is it, really?

Real vs. Virtual
= Similar essence, effect
s “Formally” different

A framework that or [computing]
resources to present a transparent view of one or more
environments
=, Hardware/software partitioning (or aggregation)
Partial or complete machine simulation
Emulation (again, can be partial or complete)
Time-sharing (in fact, sharing in general)

In general, can be mapping (M “real” resources, N
“virtual” resources)

Examples: VM (M-N), Grid Computing (M-1) , Multitasking (1-N)

Virtualization: Why?

Server consolidation

Application Consolidation
Sandboxing

Multiple execution environments
Virtual hardware

Debugging

Software migration (Mobility)
Appliance (software)
Testing/Quality Assurance

Virtual Machine Implementation:
Issues

Only one “bare” machine interface

Virtualizable Architecture

“A virtualizable architecture allows any instruction, inspecting/modifying
machine state to be trapped when executed in any but the most
privileged mode™

- Popek & Goldberg (1974)
(Vanderpool??)

Hard to optimize [from below]
s Unused memory pages
= Idle CPU
Difficult to know what NOT to do
s Example: Page faults (VMM), System Calls (OS level)

Example

X86 Instruction: STR (gets security state)

= Value retrieved has the Requester Privilege
Level

= Thus, behavior depends on the privilege level
=» Problematic

X86 has at least 17/ such instructions

Machines: Stacked Architecture

APPLICATIONS

I API Calls

USER LEVEL LIBRARIES

User Space

I System Calls

Kernel Space
KERNEL

I Instructions

HARDWARE

Possible Abstraction Levels

Instruction Set Architecture

= Emulate the ISA in software
Interprets, translates to host ISA (if required)
Device abstractions implemented in software

Inefficient
= Optimizations: Caching? Code reorganization?

= Applications: Debugging, Teaching, multiple OS

Hardware Abstraction Layer (HAL)

= Ring Compression

= Between “real machine” and “emulator” (maps to real hardware)
= Handling non-virtualizable architectures (scan, insert code?)

= Applications: Fast and usable, virtual hardware (in above too),
consolidation, migration

Possible Abstraction Levels cont«

Operating System Level
s Virtualized SysCall Interface (may be same)
= May or may not provide all the device abstractions
= Easy to. manipulate (create, configure, destroy)
Library (user-level API) Level

s Presents a different subsystem API to application
=, Complex implementation, if kernel API is limited
= User-level device drivers

Application (Programming Language) Level
= Virtual architecture (ISA, registers, memory, ...)
s Platform-independence (= highly portable)
= Less control on the system (extremely high-level)

Overall Picture

ISA

HAL

OS

Library

Performance

X

KK KX

KKK

Flexibility

Ease of Impl

Degree of
Isolation

Instruction Set Architecture Level
Virtualization

Technologies
= Emulation: Translates guest ISA to native ISA

s Emulates h/w specific IN/OUT instructions to mimic a
device

= Translation Cache: Optimizes emulation by making
use of similar recent instructions

= Code rearrangement
s Speculative scheduling (alias hardware)

Issues
s Efficient Exception handling
= Self-modifying code

ISA Level Virtualization: Examples

Bochs: Open source x86 emulator
s Emulates whole PC environment
x86 processor and most of the hardware (VGA, disk, keyboard, mouse, ...)
Custom BIOS, emulation of power-up, reboot
Host ISAs: x86, PowerPC, Alpha, Sun, and MIPS
Crusoe (Transmeta)
s "Code morphing engine” — dynamic x86 emulator on VLIW processor
s 16 MB “translation cache”
= Shadow registers: Enables easy exception handling

QEMU:

= Full Implementation
Multiple target ISAs: x86, ARM, PowerPC, Sparc
Supports self-modifying code
Full-software and simulated (using mmap()) MMU

= User-space only: Useful for Cross-compilation and cross-debugging

Virtualization through Ring
Compression

Virtual Machine
Monitor (VMM) runs
atring 0

Kernel(s) run at
ring 1

Requires that CPU
Is virtualizable

HAL Virtualization Technigues

Standalone vs. Hosted

s Drivers

s Host and VMM worlds

s I/O

Protection Rings

= Multilevel privilege domains
Handling “silent” fails |

= Scan code and R :
insert/replace artificial

traps

Cache results to optimize
Stand Alone Virtual Machine

\pplicaton

Classification of processor
architectures

Strictly virtualizable processor architectures

= Can build a VMM based on trap emulation exclusively
No software running inside the VM cannot determine the presence of

the VMM (short of Jw(Qg 2tacks)
= Examples: IBM S/390, DEC Compaq Intel Alpha, PowerPC
(Non-strictly) virtualizable processor architectures

= Trap emulation alone is not sufficient and/or not complete
E.g. instructions have different semantics at various levels (sufficient)

E.g Some software sequences can determine the presence of the VMM
(complete)

= Examples: IA-32, IA-64

Non virtualizable processor architectures
= Basic component missing (e.g. MMU, ...)

Intel IA32 Protection Rings

VMware Archltecture

Host 0S Apps

~Mware App

\

' A
. - - ¥ - -
e S k. i AL RI R e e T A Ca

Viware tri

ual Mach

4

itor

=5

J

Disks

N N
PC Hardware Memory CPU

VMware Workstation Architecture

VMware: 1I/O Virtualization

VMM does not have access to I/O
I/O in “host world”

= Low level I/O instructions (issued bY guest OS) are

merged to high-level 1I/O system calls
= VM Application executes I/O SysCalls

VVM Driver works as the communication link
between VMM and VM Application

World switch needs to “save” and “restore”
machine state

Additional techniques to increase efficiency

Network Packet Send Network Packet Receive

Guest OS Ethernet H/'W
OUT to I/0 port Device Interrupt
VI\;|M Host Eth;rnet Driver
- : _C;n;ex; s;/it;h_ B } Bridge code
VMDriver | VMNet Driver

Return to VMApp l retum from select()

!
I
|
I
| VMApp
I
|
I

VMApp
memcpy to VM memory
¥ Pt ask VMM to raise IRQ
VMNet Driver s _S ________
[Bridge code VMM
Host Ethernet Driver 1 raise IRQ
l OUT to I/O port Guest OS
IN/OUT to I/0 port
Ethernet H/'W | OUT to I/0 po
packet launch VMM
[e AR S e S e e e
I Context switch
¥
|
[VMDriver
: Return from 10CTL
¥
|
___ VMApp __ _ _ _

packet receive completion

