
1

CSE 451: Operating Systems
Winter 2007

Module 10
Memory Management

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 2

Goals of memory management

• Allocate scarce memory resources among competing
processes, maximizing memory utilization and
system throughput

• Provide a convenient abstraction for programming
(and for compilers, etc.)

• Provide isolation between processes
– we have come to view “addressability” and “protection” as

inextricably linked, even though they’re really orthogonal

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 3

Tools of memory management

• Base and limit registers
• Swapping
• Paging (and page tables and TLBs)
• Segmentation (and segment tables)
• Page fault handling => Virtual memory
• The policies that govern the use of these

mechanisms

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 4

Today’s desktop and server systems

• The basic abstraction that the OS provides for
memory management is virtual memory (VM)
– VM enables programs to execute without requiring their

entire address space to be resident in physical memory
• program can also execute on machines with less RAM than it

“needs”
– many programs don’t need all of their code or data at once

(or ever)
• e.g., branches they never take, or data they never read/write
• no need to allocate memory for it, OS should adjust amount

allocated based on run-time behavior
– virtual memory isolates processes from each other

• one process cannot name addresses visible to others; each
process has its own isolated address space

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 5

• Virtual memory requires hardware and OS support
– MMU’s, TLB’s, page tables, page fault handling, …

• Typically accompanied by swapping, and at least
limited segmentation

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 6

A trip down Memory Lane …

• Why?
– Because it’s instructive
– Because embedded processors (98% or more of all

processors) typically don’t have virtual memory

• First, there was job-at-a-time batch programming
– programs used physical addresses directly
– OS loads job (perhaps using a relocating loader to “offset”

branch addresses), runs it, unloads it
– what if the program wouldn’t fit into memory?

• manual overlays!

• An embedded system may have only one program!

2

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 7

• Swapping
– save a program’s entire state (including its memory image)

to disk
– allows another program to be run
– first program can be swapped back in and re-started right

where it was

• The first timesharing system, MIT’s “Compatible Time
Sharing System” (CTSS), was a uni-programmed
swapping system
– only one memory-resident user
– upon request completion or quantum expiration, a swap took

place
– bow wow wow … but it worked!

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 8

• Then came multiprogramming
– multiple processes/jobs in memory at once

• to overlap I/O and computation
– memory management requirements:

• protection: restrict which addresses processes can use, so they
can’t stomp on each other

• fast translation: memory lookups must be fast, in spite of the
protection scheme

• fast context switching: when switching between jobs, updating
memory hardware (protection and translation) must be quick

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 9

Virtual addresses for multiprogramming

• To make it easier to manage memory of multiple
processes, make processes use virtual addresses
(which is not what we mean by “virtual memory”
today!)
– virtual addresses are independent of location in physical

memory (RAM) where referenced data lives
• OS determines location in physical memory

– instructions issued by CPU reference virtual addresses
• e.g., pointers, arguments to load/store instructions, PC …

– virtual addresses are translated by hardware into physical
addresses (with some setup from OS)

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 10

• The set of virtual addresses a process can reference
is its address space
– many different possible mechanisms for translating virtual

addresses to physical addresses
• we’ll take a historical walk through them, ending up with our

current techniques

• Note: We are not yet talking about paging, or virtual
memory – only that the program issues addresses in
a virtual address space, and these must be
“adjusted” to reference memory (the physical address
space)
– for now, think of the program as having a contiguous virtual

address space that starts at 0, and a contiguous physical
address space that starts somewhere else

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 11

Old technique #1: Fixed partitions

• Physical memory is broken up into fixed partitions
– partitions may have different sizes, but partitioning never

changes
– hardware requirement: base register, limit register

• physical address = virtual address + base register
• base register loaded by OS when it switches to a process

– how do we provide protection?
• if (physical address > base + limit) then… ?

• Advantages
– Simple

• Problems
– internal fragmentation: the available partition is larger than

what was requested
– external fragmentation: two small partitions left, but one big

job – what sizes should the partitions be??

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 12

Mechanics of fixed partitions

partition 0

partition 1

partition 2

partition 3

0

2K

6K

8K

12K

physical memory

offset +
virtual address

P2’s base: 6K
base register

2K

<?

no

raise
protection fault

limit register

yes

3

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 13

Old technique #2: Variable partitions

• Obvious next step: physical memory is broken up into
partitions dynamically – partitions are tailored to programs
– hardware requirements: base register, limit register
– physical address = virtual address + base register
– how do we provide protection?

• if (physical address > base + limit) then… ?

• Advantages
– no internal fragmentation

• simply allocate partition size to be just big enough for process
(assuming we know what that is!)

• Problems
– external fragmentation

• as we load and unload jobs, holes are left scattered throughout
physical memory

• slightly different than the external fragmentation for fixed partition
systems

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 14

Mechanics of variable partitions

partition 0

partition 1

partition 2

partition 3

partition 4

physical memory

offset +
virtual address

P3’s base
base register

P3’s size
limit register

<?

raise
protection fault

no

yes

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 15

Dealing with fragmentation

partition 0

partition 1

partition 2

partition 3

partition 4

• Swap a program out
• Re-load it, adjacent to another
• Adjust its base register
• “Lather, rinse, repeat”
• Ugh

partition 0

partition 1

partition 2
partition 3

partition 4

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 16

Modern technique: Paging

• Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical address space

…

page 0

page 1

page 2

page X

virtual address space

…

page 3

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 17

User’s perspective

• Processes view memory as a contiguous address
space from bytes 0 through N
– virtual address space (VAS)

• In reality, virtual pages are scattered across physical
memory frames – not contiguous as earlier
– virtual-to-physical mapping
– this mapping is invisible to the program

• Protection is provided because a program cannot
reference memory outside of its VAS
– the virtual address 0xDEADBEEF maps to different physical

addresses for different processes

• Note: Assume for now that all pages of the address
space are resident in memory – no “page faults”

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 18

Address translation

• Translating virtual addresses
– a virtual address has two parts: virtual page number & offset
– virtual page number (VPN) is index into a page table
– page table entry contains page frame number (PFN)
– physical address is PFN::offset

• Page tables
– managed by the OS
– map virtual page number (VPN) to page frame number (PFN)

• VPN is simply an index into the page table
– one page table entry (PTE) per page in virtual address space

• i.e., one PTE per VPN

4

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 19

Mechanics of address translation

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame #page frame #

page table

offset
virtual address

virtual page #

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 20

Example of address translation

• Assume 32 bit addresses
– assume page size is 4KB (4096 bytes, or 212 bytes)
– VPN is 20 bits long (220 VPNs), offset is 12 bits long

• Let’s translate virtual address 0x13325328
– VPN is 0x13325, and offset is 0x328
– assume page table entry 0x13325 contains value 0x03004

• page frame number is 0x03004
• VPN 0x13325 maps to PFN 0x03004

– physical address = PFN::offset = 0x03004328

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 21

Page Table Entries (PTEs)

• PTE’s control mapping
– the valid bit says whether or not the PTE can be used

• says whether or not a virtual address is valid
• it is checked each time a virtual address is used

– the referenced bit says whether the page has been accessed
• it is set when a page has been read or written to

– the modified bit says whether or not the page is dirty
• it is set when a write to the page has occurred

– the protection bits control which operations are allowed
• read, write, execute

– the page frame number determines the physical page
• physical page start address = PFN

page frame numberprotMRV
202111

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 22

Paging advantages

• Easy to allocate physical memory
– physical memory is allocated from free list of frames

• to allocate a frame, just remove it from the free list
– external fragmentation is not a problem!

• managing variable-sized allocations is a huge pain in the neck
– “buddy system”

• Leads naturally to virtual memory
– entire program need not be memory resident
– take page faults using “valid” bit
– but paging was originally introduced to deal with external

fragmentation, not to allow programs to be partially resident

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 23

Paging disadvantages

• Can still have internal fragmentation
– process may not use memory in exact multiples of pages

• Memory reference overhead
– 2 references per address lookup (page table, then memory)
– solution: use a hardware cache to absorb page table lookups

• translation lookaside buffer (TLB) – next class

• Memory required to hold page tables can be large
– need one PTE per page in virtual address space
– 32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
– 4 bytes/PTE = 4MB per page table

• OS’s typically have separate page tables per process
• 25 processes = 100MB of page tables

– solution: page the page tables (!!!)
• (ow, my brain hurts…more later)

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 24

Segmentation
(We will be back to paging soon!)

• Paging
– mitigates various memory allocation complexities (e.g.,

fragmentation)
– view an address space as a linear array of bytes
– divide it into pages of equal size (e.g., 4KB)
– use a page table to map virtual pages to physical page

frames
• page (logical) => page frame (physical)

• Segmentation
– partition an address space into logical units

• stack, code, heap, subroutines, …
– a virtual address is <segment #, offset>

5

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 25

What’s the point?

• More “logical”
– absent segmentation, a linker takes a bunch of independent

modules that call each other and linearizes them
– they are really independent; segmentation treats them as

such

• Facilitates sharing and reuse
– a segment is a natural unit of sharing – a subroutine or

function

• A natural extension of variable-sized partitions
– variable-sized partition = 1 segment/process
– segmentation = many segments/process

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 26

Hardware support

• Segment table
– multiple base/limit pairs, one per segment
– segments named by segment #, used as index into table

• a virtual address is <segment #, offset>
– offset of virtual address added to base address of segment

to yield physical address

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 27

Segment lookups

segment 0

segment 1

segment 2

segment 3

segment 4

physical memory

segment #

+

virtual address

<?

raise
protection fault

no

yes

offset

baselimit

segment table

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 28

Pros and cons

• Yes, it’s “logical” and it facilitates sharing and reuse
• But it has all the horror of a variable partition system

– except that linking is simpler, and the “chunks” that must be
allocated are smaller than a “typical” linear address space

• What to do?

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 29

Combining segmentation and paging

• Can combine these techniques
– x86 architecture supports both segments and paging

• Use segments to manage logical units
– segments vary in size, but are typically large (multiple pages)

• Use pages to partition segments into fixed-size chunks
– each segment has its own page table

• there is a page table per segment, rather than per user address
space

– memory allocation becomes easy once again
• no contiguous allocation, no external fragmentation

Segment # Page # Offset within page

Offset within segment

1/28/2007 © 2007 Gribble, Lazowska, Levy, Zahorjan 30

• Linux:
– 1 kernel code segment, 1 kernel data segment
– 1 user code segment, 1 user data segment
– N task state segments (stores registers on context switch)
– 1 “local descriptor table” segment (not really used)
– all of these segments are paged

• Note: this is a very limited/boring use of segments!

