CSE 451: Operating Systems Winter 2006

Module 21 Distributed Systems

Ed Lazowska lazowska@cs.washington.edu Allen Center 570

What is a "distributed system"?

- · Very broad definition
 - loosely-coupled to tightly-coupled
- · Nearly all systems today are distributed in some way
 - they use email
 - they access files over a network
 - they access printers over a network
 - they're backed up over a network
 - they share other physical or logical resources
 - they cooperate with other people on other machines
 - they access the web
 - they receive video, audio, etc.

2/20/2006

© 2006 Gribble, Lazowska, Levy

Distributed systems are now a requirement

- · Economics dictate that we buy small computers
- Everyone needs to communicate
- We need to share physical devices (printers) as well as information (files, etc.)
- Many applications are by their nature distributed (bank teller machines, airline reservations, ticket purchasing)
- To solve the largest problems, we will need to get large collections of small machines to cooperate together (parallel programming)

2/20/2006

© 2006 Gribble, Lazowska, Levy

Loosely-coupled systems

- Earliest systems used simple explicit network programs
 - FTP (rcp): file transfer program
 - telnet (rlogin/rsh): remote login program
 - mail (SMTP)
- Each system was a completely autonomous independent system, connected to others on the network

2/20/2006

3

© 2006 Gribble, Lazowska, Levy

Even today, most distributed systems are looselycoupled

- each CPU runs an independent autonomous OS
- computers don't really trust each other
- some resources are shared, but most are not
- the system may look differently from different hosts
- typically, communication times are long

2/20/2006

© 2006 Gribble, Lazowska, Levy

Closely-coupled systems

- A distributed system becomes more "closely-coupled" as it
 - appears more uniform in nature
 - runs a "single" operating system
 - has a single security domain
 - shares all logical resources (e.g., files)
 - shares all physical resources (CPUs, memory, disks, printers, etc.)
- In the limit, a distributed system looks to the user as if it were a centralized timesharing system, except that it's constructed out of a distributed collection of hardware and software components

2/20/2006

© 2006 Gribble, Lazowska, Levy

Tightly-coupled systems

- A "tightly-coupled" system usually refers to a multiprocessor
 - runs a single copy of the OS with a single job queue
 - has a single address space
 - usually has a single bus or backplane to which all processors and memories are connected
 - has very low communication latency
 - processors communicate through shared memory

2/20/2006

© 2006 Gribble, Lazowska, Levy

Some issues in distributed systems

- Transparency (how visible is the distribution)
- Security
- Reliability
- Performance
- Scalability
- Programming models
- Communication models

2/20/2006

© 2006 Gribble, Lazowska, Levy

Grapevine distributed mail service

- Xerox PARC, 1980
 - cf. Microsoft Outlook/Exchange today!!!!!
- Goals
 - cannot rely on integrity of client
 - once the system accepts mail, it will be delivered
 - no single Grapevine computer failure will make the system unavailable to any client either for sending or for receiving mail
- Components
 - GrapevineUser package on each client workstation
 - Registration Servers
 - Message Servers
- Implementation: Remote Procedure Call

2/20/2006

© 2006 Gribble, Lazowska, Levy

q

11

GRAPEVINE GRAPEVINE Server A Server B GrapevineUser GrapevineUser File Server "E" Server "B" GrapevineUser GrapevineUser GrapevineUser File Server "E" Server "C" GrapevineUser GrapevineUser GrapevineUser Client program user "P.Q" Server "X.Y" 2/20/2006 © 2006 Gribble, Lazowaka, Levy 10

Grapevine: Sending a message

- · User prepares message using mail client
- Mail client contacts GrapevineUser package on same workstation to actually send message
- GrapevineUser package
 - contacts any Registration Server to get a list of Message Servers
 - contacts any Message Server to transmit message
 - presents source and destination userids, and source password, for authentication
 - Message Server uses any Registration Server to authenticate
 - sends message body to Message Server
 - Message Server places it in stable storage and acknowledges receipt

2/20/2006

© 2006 Gribble, Lazowska, Levy

Grapevine: Transport and buffering

- For each recipient of the message, Message Server contacts any Registration Server to obtain list of Message Servers holding mail for that recipient
- Sends a copy of the message to one of those Message Servers for that recipient

2/20/2006 © 2006 Gribble, Lazowska, Levy

2

12

Grapevine: Retrieving mail

- User uses mail client to contact GrapevineUser package on same workstation to retrieve mail
- GrapevineUser package
 - contacts any Registration Server to get a list of each
 Message Server holding mail for the user ("inbox site")
 - contacts each of these Message Servers to retrieve mail
 - · presents user credentials
 - Message Server uses any Registration Server to authenticate
 - acknowledges receipt of messages so that the server can delete them from its storage

2/20/2006

© 2006 Gribble, Lazowska, Levy

13

Grapevine: Scalability

- Can add more Registration Servers
- Can add more Message Servers
- Only thing that didn't scale was handling of distribution lists
 - the accepting Message Server was responsible for expanding the list (recursively if necessary) and delivering to an appropriate Message Server for each recipient
 - some distribution lists contained essentially the entire user community
- Jeff Dean (Google) told us they don't even think about more than two decimal orders of magnitude
 - fundamental design decisions will need to change
 - advances in technology will make it possible

2/20/2006

© 2006 Gribble, Lazowska, Levy

3