
1

CSE 451: Operating Systems
Winter 2006

Module 16
Journaling File Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

2/16/2006 © 2006 Gribble, Lazowska, Levy 2

In our most recent exciting episodes …

• Original Bell Labs UNIX file system
– a simple yet practical design
– exemplifies engineering tradeoffs that are pervasive in

system design
– elegant but slow

• and performance gets worse as disks get larger

• BSD UNIX Fast File System (FFS)
– solves the throughput problem

• larger blocks
• cylinder groups
• awareness of disk performance details

2/16/2006 © 2006 Gribble, Lazowska, Levy 3

Both are real dogs when a crash occurs

• Buffering is necessary for performance
• So the disk itself may be in an inconsistent state

– metadata updated but data not
– data updated but metadata not
– either or both partially updated

• Fsck (i-check, d-check) are very slow
– must touch every block
– worse as disks get larger!

2/16/2006 © 2006 Gribble, Lazowska, Levy 4

Journaling file systems

• Became popular ~2002
• There are several options that differ in their details

– Ext3, ReiserFS, XFS, JFS

• Basic idea
– update metadata, or all data, transactionally

• “all or nothing”
– if a crash occurs, you may lose a bit of work, but the disk will

be in a consistent state
• more precisely, you will be able to quickly get it to a consistent

state by using the transaction log/journal – rather than scanning
every frigging block

2/16/2006 © 2006 Gribble, Lazowska, Levy 5

Undo log

• Log: an append-only file containing log records
– <start t>

• transaction t has begin
– <t,x,v>

• transaction t has updated block x and its old value was v
– <commit t>

• transaction t has committed

• Rules
– if t modifies x, <t,x,v> must be written to disk before the

updated x is written to disk
– if t commits, then all modified blocks x must be written to

disk before <commit t>

2/16/2006 © 2006 Gribble, Lazowska, Levy 6

If a crash occurs

• Recover the log
• Committed transactions are problem-free

– all data was updated on disk before the commit record was
written

• Uncommitted transactions
– The log contains the old value of each block involved in the

transaction
– By going through the log, you can restore the disk to the

(consistent) state before the transaction was begun

• Note that once a transaction has committed, it can be
deleted from the log

2

2/16/2006 © 2006 Gribble, Lazowska, Levy 7

Impact on performance

• The log is a big contiguous write
– very efficient

• And you do fewer synchronous writes
– very costly in terms of performance

• So journaling file systems can actually improve
performance (immensely)

• As well as making recovery very efficient

2/16/2006 © 2006 Gribble, Lazowska, Levy 8

Want to know more?

• CSE 444! This is a direct ripoff of database system
techniques
– But it is not Microsoft Windows Longhorn – “the file system is

a database”
– Nor is it a “log-structured file system” – there is no file

system, just a log

