Reminder: Mechanics of address translation

Virtual address

physical address

physical memory

page table

page frame #

offset

Note: Each process has its own page table!

Reminder: Page Table Entries (PTEs)

<table>
<thead>
<tr>
<th>User</th>
<th>Index</th>
<th>Page</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

- PTE's control mapping
 - The valid bit says whether or not the PTE can be used
 - The referenced bit says whether the page has been accessed
 - The modified bit says whether or not the page is dirty
 - It is set when a page has been read or written to
 - It is set when a write to the page has occurred
 - The protection bits control which operations are allowed
 - Read, write, execute
 - The page frame number determines the physical page
 - Physical page start address = PFN

Paged virtual memory

- We've hinted that all the pages of an address space do not need to be resident in memory
 - The full (used) address space exists on secondary storage (disk) in page-sized blocks
 - The OS uses main memory as a (page) cache
 - A page that is needed is transferred to a free page frame
 - If there are no free page frames, a page must be evicted
 - Evicted pages go to disk (only need to write if they are dirty)
 - All of this is transparent to the application (except for performance)
 - Managed by hardware and OS
- Traditionally called paged virtual memory

Page faults

- What happens when a process references a virtual address in a page that has been evicted?
 - When the page was evicted, the OS set the PTE as invalid and noted the disk location of the page in a data structure (that looks like a page table but holds disk addresses)
 - When a process tries to access the page, the invalid PTE will cause an exception (page fault) to be thrown
 - OK, it's actually an interrupt
 - The OS will run the page fault handler in response
 - Handler uses the 'like a page table' data structure to locate the page on disk
 - Handler reads page into a physical frame, updates PTE to point to it and be valid
 - OS restarts the faulting process
 - There are a million and one details...

Demand paging

- Pages are only brought into main memory when they are referenced
 - Only the code/data that is needed (demanded) by a process needs to be loaded
 - What's needed changes over time, of course...
 - Hence, it's called demand paging
- Few systems try to anticipate future needs
 - OS crystal ball module notoriously ineffective
 - But it's not uncommon to cluster pages
 - OS keeps track of pages that should come and go together
 - Bring in all when one is referenced
 - Interface may allow programmer or compiler to identify clusters
Page replacement

- When you read in a page, where does it go?
 - If there are free page frames, grab one
 - otherwise, must evict something else

- This is called page replacement

- Page replacement algorithms
 - try to pick a page that won’t be needed in the near future
 - try to pick a page that hasn’t been modified (thus saving the disk writes)
 - OS also tries to keep a pool of clean pages around, so that
 even if you have to evict a page, you won’t have to write it
 accomplished by pre-writing when there’s nothing better to do

 - Much more on this later!

Evicting the best page

- The goal of the page replacement algorithm:
 - reduce fault rate by selecting best victim page to remove

- “System” fault rate or “Program” fault rate??

- The best page to evict is one that will never be touched again
 - duh…
 - “never” is a long time

- Belady’s proof: evicting the page that won’t be used for the longest period of time minimizes page fault rate

- Rest of this module:
 - survey a bunch of page replacement algorithms
 - for now, assume that a process pages against itself, using a fixed number of page frames

Oh, man, how can any of this possibly work?

- Locality!
 - temporal locality
 - locations referenced recently tend to be referenced again soon
 - spatial locality
 - locations near recently referenced locations are likely to be referenced soon (think about why)

- Locality means paging can be infrequent
 - once you’ve paged something in, it will be used many times
 - on average, you use things that are paged in

- but, this depends on many things:
 - degree of locality in the application
 - page replacement policy and application reference pattern
 - amount of physical memory vs. application “footprint” or “working set”

How do you “load” a program?

- Create process descriptor (process control block)
- Create page table
- Put address space image on disk in page-sized chunks
- Build page table (pointed to by process descriptor)
 - all PTE valid bits ‘false’
 - an analogous data structure indicates the disk location of the corresponding page
 - when process starts executing:
 - instructions immediately fault on both code and data pages
 - faults taper off, as the necessary code/data pages enter memory

#1: Belady’s Algorithm

- Provably optimal: lowest fault rate (remember SJF?)
 - evict the page that won’t be used for the longest time in future
 - problem: impossible to predict the future

- Why is Belady’s algorithm useful?
 - as a yardstick to compare other algorithms to optimal
 - if Belady’s isn’t much better than yours, yours is pretty good
 - how could you do this comparison?

- Is there a best practical algorithm?
 - no, depends on workload

- Is there a worst algorithm?
 - no, but random replacement does pretty badly
 - don’t laugh – there are some other situations where OS’s use near-random algorithms quite effectively!

#2: FIFO

- FIFO is obvious, and simple to implement
 - when you page in something, put it on the tail of a list
 - evict page at the head of the list

- Why might this be good?
 - maybe the one brought in longest ago is not being used

- Why might this be bad?
 - then again, maybe it is being used
 - have absolutely no information either way

- In fact, FIFO’s performance is typically lousy
- In addition, FIFO suffers from Belady’s Anomaly
 - there are reference strings for which the fault rate increases when the process is given more physical memory
#3: Least Recently Used (LRU)

- LRU uses reference information to make a more informed replacement decision
 - idea: past experience is a decent predictor of future behavior
 - on replacement, evict the page that hasn’t been used for the longest period of time
 - LRU looks at the past, Belady’s wants to look at the future
 - can you think of an example where LRU would be terrible?
 - in general, it works exceedingly well

- Implementation
 - to be perfect, must grab a timestamp on every memory reference, put it in the PTE, order or search based on the timestamps …
 - way too $$$ in memory bandwidth, algorithm execution time, you name it …

Approximating LRU

- Many approximations, all use the PTE reference bit
 - keep a counter for each page
 - at some regular interval, for each page, do:
 - if ref bit = 0, increment the counter (hasn’t been used)
 - if ref bit = 1, zero the counter (has been used)
 - the counter will contain the # of intervals since the last reference to the page
 - page with largest counter is least recently used

- Some architectures don’t have PTE reference bits
 - can simulate reference bit using the valid bit to induce faults
 - hack, hack, hack

#4: LRU Clock

- AKA Not Recently Used (NRU) or Second Chance
 - replace page that is “old enough”
 - logically, arrange all physical page frames in a big circle (clock)
 - just a circular linked list
 - a “clock hand” is used to select a good LRU candidate
 - sweep through the pages in circular order like a clock
 - if ref bit is off, it hasn’t been used recently, we have a victim
 - so, what is minimum “age” if ref bit is off?
 - if the ref bit is on, turn it off and go to next page
 - arm moves quickly when pages are needed
 - low overhead if have plenty of memory
 - if memory is large, “accuracy” of information degrades
 - add more hands to fix

Allocation of frames among processes

- FIFO and LRU Clock each can be implemented as either local or global replacement algorithms
 - local
 - each process is given a limit of pages it can use
 - “pages against itself” (evicts its own pages)
 - global
 - the “victim” is chosen from among all page frames, regardless of owner
 - processes’ page frame allocation can vary dynamically

- Issues with local replacement?
 - Issues with global replacement?
 - linux uses global replacement

Hybrid algorithms

- local replacement
- an explicit mechanism for adding or removing page frames

Issues with all 3 approaches?
The working set model of program behavior

- The working set of a process is used to model the dynamic locality of its memory usage
 - working set = set of pages process currently “needs”
 - formally defined by Peter Denning in the 1960’s
- Definition:
 - \(WS(t, w) = \{\text{pages } P \text{ such that } P \text{ was referenced in the time interval } (t, t-w)\} \)
 - \(t \): time
 - \(w \): working set window (measured in page refs)
 - A page is in the working set (WS) only if it was referenced in the last \(w \) references
 - Obviously the working set (the particular pages) varies over the life of the program
 - So does the working set size (the number of pages in the WS)

Working set size

- The working set size, \(|WS(t, w)| \), changes with program locality
 - During periods of poor locality, more pages are referenced
 - Within that period of time, the working set size is larger
- Intuitively, the working set must be in memory, otherwise you’ll experience heavy faulting (thrashing)
 - When people ask “How much memory does Netscape need?”, really they’re asking “What is Netscape’s average (or worst case) working set size?”

#5: Hypothetical Working Set algorithm

- Estimate \(WS(0, w) \) for a process
- Allow that process to start only if you can allocate it that many page frames
- Use a local replacement algorithm (LRU Clock?) make sure that “the right pages” (the working set) are occupying the process’s frames
- Track each process’s working set size, and re-allocate page frames among processes dynamically
- Problem? Solution?
- What the heck is \(w \)?

#6: Page Fault Frequency (PFF)

- PFF is a variable-space algorithm that uses a more ad hoc approach
- Attempt to equalize the fault rate among all processes, and to have a “tolerable” system-wide fault rate
 - Monitor the fault rate for each process
 - If fault rate is above a given threshold, give it more memory
 - So that it faults less
 - If the fault rate is below threshold, take away memory
 - Should fault more, allowing someone else to fault less

Thrashing

- Thrashing is when the system spends most of its time servicing page faults, little time doing useful work
 - Could be that there is enough memory but a lousy replacement algorithm (one incompatible with program behavior)
 - Could be that memory is over-committed
 - Too many active processes
Where is life interesting?

- Not if system has too much memory
 - page replacement algorithm doesn't much matter (over-provisioning)
- Not if system has too little memory
 - page replacement algorithm doesn't much matter (over-committed)
- Life is only interesting on the border between over-provisioned and over-committed
- Networking analogies
 - Aloha Network as an example of thrashing
 - over-provisioning as an alternative to Quality of Service guarantees

Summary

- Virtual memory
- Page faults
- Demand paging
 - don't try to anticipate
- Page replacement
 - local, global, hybrid
- Locality
 - temporal, spatial
- Working set
- Thrashing

- Page replacement algorithms
 - #1: Belady’s – optimal, but unrealizable
 - #2: FIFO – replace page loaded furthest in the past
 - #3: LRU – replace page referenced furthest in the past
 - approximate using PTE reference bit
 - #4: LRU Clock – replace page that is “old enough”
 - #5: Working Set – keep the working set in memory
 - #6: Page Fault Frequency – grow/shrink number of frames as a function of fault rate