* Administrivia

e Project 4 due in a week

e Turnin only, no report
e Homework 4 due next Wednesday
e ECJ

e Today:
e Project 4 and file system stuff
e EC questions?

* Project 4

e Work with a real file system
e Given:

e cse451fs: simplified file system for Linux
e Goals:

e Understand how it works

e Modify implementation to:
e Increase maximum size of files (currently 13KB)
e Allow for longer file names (currently 30 chars)

* Linux FS layers

User apps
|
VFS Common FS interface
ext2 | ext3 | vfat |
Buffer cache $ for disk blocks

@— Disk drivers
3

* File systems in Linux

e Layered on top of a block device
» Device provides a big array of blocks
* Blocks are cached in the buffer cache
e Implement a standard interface
e file_operations
» read/write/seek files; read directory
e inode_operations
e create / lookup / unlink / mkdir / rmdir / rename
e super_operations
¢ read/write inodes
e address_space_operations
» readpage/writepage for memory-mapped IO
e file_system_operations
e read in superblock

* Project 4 Setup

e Build a kernel module for cse451fs (and a kernel
supporting cse451fs)

Transfer it to VMware

On VMware, use a ramdisk to test your file
system.

e j.e. create a fake disk in memory, create your FS on top,
mount, test.

load cse451fs
Make a file system using (modified) mkfs tool
mount, test

Step 1: try this procedure with given code
Step 2: read cse451fs.h, then dir.c

* cse451fs disk structure

H boot ‘superblock ‘data map ‘iﬂode blocks‘ data blocks ‘

e Superblock: tells where all other things are
« Contains inode map:
« Bit array, tracks which inodes are currently in use
e E.g. for 3 dirs + 4 files, need 7 inodes
e Data map:
« Bit array, tracks which data blocks are in use

cse451fs structure

bolot superll:ilock data Ilnap inode T:Zocks data4|:10:cks
|

struct cse4sl super_bl ock {

1365 __ul6 s_nNuni nodes; /1 inode map is tail of superblock
2 __ul6 s_nDataMapStart; /1 block # of first data map bl ock
1 __u32 s_nDat aMapBl ocks; /1 data map size, in blocks

3 __u32 s_nlnodeStart; /1 block # of first inode block
85 __u32 s_nNun nodeBl ocks; /1 nunber of blocks of inodes

88 __u32 s_nDataBl ocksStart; /1 block # of first data bl ock
4008 __u32 s_nDat aBl ocks; Il nunmber of blocks of data

7 __u32 s_nBusyl nodes; /1 nunber of inodes in use

0x451f __ul6 s_magic; /1 magic number

char s_imap[0]; /1 name for inode nap
Iy

Sample values for a 4MB disk with 4 files and 3 dirs using 1K blocks

Inode structure

#define CSE451_NUVDATAPTRS 13

struct cse451_i node {

__ulé i_node; deternmines if file or dir
__ul6 i_nlinks; (+ protection)

__ul6 i_uid;

__ulé i_gid;

_u32 i_filesize;

~_u32 i _dat abl ocks[CSE451_NUMDATAPTRS] ;

I

¢ Inode size?
e Multiple inodes per block!
e How many for 1K block?
* mkfs decides how many inodes to create
* mkfs.cse451fs.c : create an inode for every three data blocks

Data blocks

* Blocks for regular files contain file data
e Blocks for directories contain:

#def i ne CSE451_MAXDI RNAMELENGTH 30

Directory block for /
struct cse451_dir_entry { -
__ul6 inode; Entry Field Value
char name[CsE451_MAXDI RNAVELENGTH] ; 0 Inode 1
b Name N
. 1 Inode 1
e Data block for / directory Name
containing:
. 2 Inode 2
etc bin
Name “etc”
« What's this dir’s inode number? |3 Inode 3
¢ What is the “file size” field Name “bin”
in this dir’s inode? 4 Inode 0
Name 0

Sample data block usage

For a 4MB file system with 1KB blocks
o/

o etc

« passwd

* fstab
« bin

« sh

* date
File/Directory Size Data Blocks
/ 4 entries + 1 null entry 1
/etc 4 entries + 1 null entry 1
/bin 4 entries + 1 null entry 1
/etc/passwd 1024 bytes 1
/etc/fstab 100 bytes 1
/bin/sh 10,000 bytes 10
/bin/date 5,000 bytes 5

Total: 20
ota 10

Project 4 requirements

e Increasing maximum size of files
* Be efficient for small files but allow large files
¢ Changing constant (=13) is not enough.
e Come up with a better design/structure for locating data
blocks.
o Indirect blocks?
* Don't have to support arbitrarily large files
¢ Fine to have constant new_max (but new_max >>
old_max)
e Allow for longer file names
¢ Be efficient for short files names but allow large file
names

e Again, don't just change the constant

Approaches for longer file names

e Store long names in a separate data block, and
keep a pointer to that in the directory entry.
e Short names can be stored as they are.
¢ Recommended

e Combine multiple fixed-length dir entries into a
single long dir entry (win95)
* It is easier if the entries are adjacent.

e Put a length field in the dir entry and store
variable length strings

* need to make sure that when reading a directory, that
you are positioned at the beginning of an entry.

Getting started with the code

e Understand the source of the limits in the existing
implementation
e Look at the code that manipulates dir entries
* mkfs code
e dir.c in the file system source code
e Longer file names:

¢ The code for will largely be in dir.c: add_entry() and
find_entry()

¢ In mkfs, change how the first two entries (for “.” and
“..") are stored
e Bigger files:
e super.c:get_block()

* References to i_datablock[] array in an inode will have to
change

VFS vs cse451fs

* Don't conflate VFS structures and cse451fs structures!
* inodes, superblocks
e E.g., there are “two” inodes:
e VFS struct inode
e Generic inode used in Linux source (works for any FS)
e Lives in memory
e cse451 struct cse451_i node
e Actual inode representation on disk

« inode.c:cse451_read_i node converts from cse451_i node to
struct inode
« Copies over mode, size, etc
« Copies over i_datablocks[] to struct inode’s generic_ip field
(which will now be used as type cse451_i node_i nf o)
i node. c:cse451_write_i node converts the other way

Linux Buffer Manager Code

e To manipulate disk blocks, you need to go
through the buffer cache
e Linux buffer cache fundamentals:
e blocks are represented by buffer_heads
e Just another data structure
e Actual data is in buffer_head->b_data
e For a given disk block, buffer manager could be:
e Complete unaware of it
no buffer_head exists, block not in memory
* Aware of block information

buffer_head exists, but block data (b_data) not in
memory

* Aware of block information and data
Both the buffer_head and its b_data are valid (“$ hit")
15

Accessing blocks

e To read a block, FS uses bread(...):
e Find the corresponding buffer_head
¢ Create if doesn’t exist

e Make sure the data is in memory (read from
disk if necessary)

e To write a block:

* mark_buffer_dirty() + brelse() - mark buffer as changed
and release to kernel (which does the writing)

Some buffer manager functions

csea51_bread(i node, bl ock, create) Get the buffer_head for the given disk block,
ensuring that the data is in menory and ready
for use. Increments ref count; alvays pair
vith a brelse.

bh = csed51_get bl k(i node, bl ock, Get the buffer_head for the given disk block.
create) Does not guarantee anything about the state of
the actual data. Increments ref count; alvays
pair vith a brelse. Zeros out new bl ocks
(required for security)

brel se(bh) Decrenment the ref. count of the given buffer.

mar k_buf fer _di rty(bh) Mark the buffer modified, meaning needs to be
written to disk at some point

mar k_buf f er _upt odat e(bh) Indicate that the data pointed to by bh is
val i d.

Hints

e Learn how to use bread/brelse and other buffer
cache stuff by looking at provided code

All printk messages stored in /var/log/messages
e Can view to examine long debug outputs

e Q: “It is extremely frustrating not to be able to
read debug messages because they scroll off
screen in vmware so quickly :(”

* A: Use Shift-pageup and Shift-pagedown

Q: “"How does Is get its entries?”

e dir.c:readdir()

* A gcc warning

e gcc might insert extra space into structs

e How big do you think this is?
struct test { char a; int b; }

e Why is this a problem?
e What if t est represents something you want on disk?
e.g. directory entries
« Discrepancy between the disk layout and memory layout

e Fix:
struct test2 {
char a;
int b;

} __attribute__((packed));

« sizeof (test2) isnow 5

* More hints

e Some stuff in linux kernel is limited to 256
chars
e e.g.VFS,Is
* Be careful when testing long filenames!
» dd is useful for creating large test files
e dd if=/dev/zero of=200k bs=1024 count=200
« df is useful to check you're freeing
everything correctly

