

Usual stuff

- Project 2 back today
 - _n Average: 66.8/80
- _n Today:
 - Project 3
 - _n A few project 2 comments

Project 3

- Out now and due next Friday
- Given: vmtrace
 - Simulates virtual memory on a memory trace file
 Tracefile = a list of all VA references during execution
 - Takes in:
 - a memory trace file (given, netscape.exe.et.gz)
 - physical memory size
 - page size Outputs:
 - # of memory references
 - # of page faults
 - compulsory faults
 - page evictions pageouts

P3 Goals

- Implement some page replacement algorithms
- _n Design and perform an experiment on some aspect of virtual memory
 - Important to pick a good topic, ask us if not sure!

Replacement Algorithms

- Given:
 - random
- You need to write:
 - _n FIFO
 - LRU Clock
 - One of your choice

 - A few possibilities:
 True LRU (e.g. via storing full timestamp)
 - Variations on LRU Clock (enhanced second-chance, etc) LFU/MFU
 - Your own!
- You can write more than 3 if your experiment focuses on replacement algorithms.

Project 3 experiment

- _n Have a hypothesis
 - "Algorithm y is better than algorithm x"
 - "Big pages are better"
 - "Prefetching will reduce the number of page faults"
 - "If we understand why x happens, we can fix it"
- Explain why you think it will turn out that way
- _n Two steps
 - n Determine baseline behavior
 - New test
 - Change one aspect of the system, observe differences

Good experiment ideas

- What is the ideal page size for this trace under different amounts of main memory?
- Compare performance of various replacement algorithms. How much better/worse is page replacement algorithm X than Y?
 - Compare "real" LRU and LRU clock, FIFO, 2Q, ARC, etc
- n How close can we come to LRU without doing any work between page faults?
 - No scanning, constant work per page fault
- How important is recency vs. frequency in predicting page re-use?

Not so good ideas

- h What kind of music is made when I convert the address trace to notes?
- _n Can I make a fractal out of this data?

Tips

- n vmtrace is not an execution simulation
- _n You control what happens on a page fault
- _n You control what happens on a memory access
- ⁿ You can modify formats for PTE, page, etc
- n Refresh your scripting skills
- n vmtrace is very CPU-intensive
 - n spinlock/coredump: PIII-800/256MB
 - ⁿ Find faster machines (such as Linux boxes in the lab)
 - ⁿ Copy the trace file to local machine

Ω