Some usual stuff

n Today’s office hours in 006 at 4:30
n Grading

» Homework 2 back today (average: 45/50)

» I have old HW1/project 1/midterms, pick up at the end
n Project 3 out next Monday

» VM emulation and page replacement: nice and easy

n Today:
» Midterm problem 2
» Project 2 — clear up a few issues; questions
» Some more VM practice problems

* Midterm question 2

Class ReaderWiterLock {
Sermaphore nutex = 1,
OkToRead = 0,
OkToWiter = 0;
int AR=0, // # of readers that have acquired a read |ock
WR=0, // # of readers waiting to acquire a read |ock
AWE0, // # of witers that have acquired a wite |ock
WAO; // # of witers that are waiting for a wite |ock

* Readers

void AcquireReadLock() {

P(nutex); // P == decrenent

it (AW==0) {
V(CkToRead); // V == increnent
AR++;

} el se WR++;

V(nut ex) ;

P(kToRead) ;

voi d Rel easeReadLock() {
P(nut ex) ;
AR--;
it ((AR==0) & (W> 0)) {
V(CkToWite);
AW+ WV -

V(mut ex) ;

* Writers

voi d AcquireWitelLock() { void Rel easeWitelLock() {
P(nutex); P(nut ex) ;
if (AW+ AR == 0) { AW -
V(CkToWite); if (Ww> 0) {
AW V(CkToWite);
} el se WM+; AW+ WV -
V(nut ex) ; } else {
P(kToWite); while (WR > 0) {
} V(CkToRead) ;
AR+, WR--;
}
V(mut ex) ;
}

Issues

a) Why is this deadlock-free?
b) scheduling policy...
c) fix writer starvation
i. writers run exclusively
ii. readers may run concurrently with other readers

ii. when any reader is granted a readlock, then all
readers waiting for a readlock at that time are also
granted readlocks

iv. no additional readers are granted readlocks if any
writer has requested a writelock

d) fix reader starvation

* P2 part 4 — interrupts vs locks

n In general, what are the problems with
just disabling interrupts everywhere?

n It's probably ok to disable interrupts in
most of your library code
a It's short

» We don't care about performance

n Most important thing: get it working

* Webserver w/user threads

n Might not work!!!
» Synchronous I/O
~ E.g. accept() problem

» yield() in main thread after handing off the socket

id makes things better
n Use pthreads for part 5 and part 6
n We won't test sioux with user threads

* Part 6

n Keep in mind clients and server probably
have the same bandwidth if run on two
CSE hosts!

n Best to run webclient with —| 1 (i.e. one
loop per client) for 5 and 25 clients
» Easier to explain what you see

» If you want to average, run webclient multiple
times

* Project 2 — last questions?

* VM exercise 1

virtual address

virtual page #

physical memory

page
page table frame 0
page
frame 1
page
frame 2
page
frame 3

page
frame Y
» Often, first page table entry (page zero) is left invalid by the OS
0 why?

n How can we use paging to set up sharing of memory between two
processes? 10

physical address
page frame # —> | page frame # | offset }—>

* TLBs

virtual address
virtual page #

physical memory

page table

page
frame 0

page
frame 1

physical address

miSS:L page frame # —-{ page frame # | offset }—'

page
frame 2

hit

page
frame 3

n Why?

» No TLB: Average number of memory accesses per virtual addr ref: 2

o With a TLB (99% hit rate): 0.99%1 + 0.01*2 = 1.01

page
frame Y.

* VM exercise 2

n Consider a program consisting of 25%
load/store instructions.

» What is the base # of memory accesses per
executed instruction with no virtual memory?

» Assuming a VM setup with three-level page tables
and no TLB, how many extra memory accesses per
instruction executed does this program need?

» What if we have a TLB with a 95% hit rate? With
100% hit rate?

* What does a TLB look like?

n Consider the VM setup from midterm question 3:
» 4K pages, 64-bit arch, 3-level 4K page tables.

« Let’s assume a PTE is [30 [1]1]
n Assume TLB is fully-associative "™ paladirty

* TLB size

n How would you experimentally determine
TLB size?

* TLB size

n Step through a huge array in such a way that each
access goes to a different page

n Step an increasing number of times
n look for timing increases

Determining Data TLB size for Pentium 4

; Pt
£ 0o
£ /
F04

P E PSP PPN RR PGP E PP
TLB size 15

* Page table/TLB examples

n Intel x86
» 4K pages (common) or 4M pages (jumbo pages)
» Two-level page tables
» Pentium 4: 64-entry TLB
n AMD-64
n still 4K or 2M pages
» Four (1) PT levels for 4K pages; three for 2M pages
» Two-level TLB (40 entries/512 entries)
» Why? What does this buy you?
n Alpha
» 8K page size
» Three-level page table, each one page
» Alpha 21264: 128-entry TLB

* Example Page Sizes

Computer Page Size
n Atlas 512 48-bit words
n Honeywell-Multics 1024 36-bit words
n IBM 370/XA and 370/ESA 4 Kbytes
n VAX family 512 bytes
» IBM AS/400 512 bytes
n DEC Alpha 8 Kbytes
n MIPS 4 kbytes to 16 Mbytes
n UltraSPARC 8 Kbytes to 4 Mbytes
n Pentium 4 Kbytes or 4 Mbytes
n PowerPc 4 Kbytes

IA-64 4 Kbytes to 4 Gbytes
1

7

