* Reminders

n Homework 3 due next Monday
» Synchronization

n Project 2 parts 1,2,3 due next Wednesday
» Threads, synchronization

n Office hour at 3:30, not 4:30 today

n Today:
» Project 2 continued (parts 2,3)
» Synchronization

* Project 2 Part 1 Questions

n Any questions about part 1?

n Some common issues:
» sthread_create doesn't immediately run the new
thread

» sthread_exit can ignore its ret argument

» How do you clean up an exiting thread?
» Must switch to another thread
» Clean up in all places after sthread_switch()
» Have a special GC thread

* Synchronization Solutions

High-level
n Monitors
» Java synchronized method

0OS-level support
n Special variables — mutexes, semaphores, condition vars
n Message passing primitives

Low-level support
» Disable/enable interrupts
n Atomic instructions

Disabling/Enabling Interrupts

Thread A Thread B:)
di sabl e_i nterrupts() di sabl e_interrupts()

critical _section() critical _section()
enabl e_i nterrupts() enable_interrupts()

n Prevents context-switches during execution of CS

n Sometimes necessary
» E.g. to prevent further interrupts during interrupt handling

n Many problems

Hardware support

n Atomic instructions:
» Test and set
» Swap
» Compare-exchange (x86)
» Load-linked store conditional (MIPS, Alpha, PowerPC)
n Use these to implement higher-level primitives
» E.g. test-and-set on x86 (given to you for part 4) is
written using compare-exchange.
» compare_exchange(lock_t *x,int y,int z):
if(*x ==y)
*x'=z;
return'y;
return *x;
o test_and_set(lock_t *I) {

* Looking ahead: preemption

n You can start inserting synchronization code
» disable/enable interrupts
» atomic_test_and_set

» Where would you use these?

» Example:

nextTCB = sthread_dequeue(readyQ);
switch to nextTCB;

Semaphore review

n Semaphore = a special variable
» Manipulated atomically via two operations:
W P (wait)
"V (signal)
n Has a counter = number of available resources
n P decrements it
» Vincrements it
n Has a queue of waiting threads
« If execute wait() and semaphore is free, continue
 If not, block on that waiting queue
n signal() unblocks a thread if it's waiting

Synchronization in Project 2

n Part 2: write two synchronization primitives
n Implement mutex (binary semaphore)

» How is it different from spinlock?

» Need to keep track of lock state

» Need to keep waiting threads on a queue

» In lock(), may need to block current thread

» Don't put on ready queue
» Do run some other thread

» For unlock(), need to take a thread off the waiting
queue if available

Condition Variable

» A“place” to let threads wait for a certain event to occur
while holding a lock (often a monitor lock).
n It has:
» Wait queue
» Three functions: wait, signal, and broadcast
» wait —sleep until the event happens
 Signal —event/condition has occurred. If wait queue nonempty,
wake up one thread, otherwise do nothing
Do not run the woken up thread right away
FIFO determines who wakes up
 broadcast — just like signal, except wake up all threads

- In part 2, you implement all of these

Condition Variables 2

n How are CVs different from semaphores?

n More about
cond_wai t (sthread_cond_t cond, sthread_nutex_t |ock)
» Called while holding | ock!
» Should do the following atomically:
» Release the lock (to allow someone else to get in)
» Add current thread to the waiters for cond
o Block thread until awoken

» After woken up, a thread should reacquire its lock before
continuing

n Good explanation: man pt hr ead_cond_wai t
» We follow the same spec for wait, signal, bcast

* Monitors: preview

n One thread inside at a time
n Lock + a bunch of condition variables (CVs)

n CVs used to allow other threads to access the
monitor while one thread waits for an event to occur

s |
shared data

04

OO O o
/ hO{ .}
at most one thread

in monitor at a operations (procedures)
time

waiting queue of threads
trying to enter the monitor

II

* Part 3 problem

n N cooks produce burgers & place on stack
n M students grab burgers and eat them
n Provide correct synchronization
» Check with your threads and pthreads!
n Print out what happens!
n sample output (rough draft):

cook 2 produces burger #5
cook 2 produces burger #6
cook 3 produces burger #7
student 1 eats burger #7
student 2 eats burger #6
cook 1 produces burger #8
student 1 eats burger #8
student 1 eats burger #5

* Miscellaneous

n Synchronization is necessary when multiple
threads access the same shared data

n Can't use some primitives in interrupt handlers
» Why? Which ones?

n Don't forget to release lock, semaphore, etc
» Check all paths

n Synchronization bugs can be very difficult to find
» Read your code

Sample synchronization problem

Late-Night Pizza
n A group of students study for cse451 exam
» Can only study while eating pizza
n Each student thread executes the following:
» while (1) {
pick up a piece of pizza;
study while eating the pizza;
}
n If a student finds pizza is gone, the student goes to sleep
until another pizza arrives
n First student to discover pizza is gone orders a new one.
» Each pizza has S slices.

* Late-Night Pizza

n Synchronize student threads and pizza delivery
thread

Avoid deadlock
n When out of pizza, order it exactly once

No piece of pizza may be consumed by more
than one student

E]

Bl

Semaphore solution

shared data:
semaphore pizza; (counting semm, init to O, represent
nurber of availabl e pizza resources)
semaphore deliver; (init to 1)
int numslices = 0;
semaphore nutex; (init to 1) // guard updating of numslices

St udent { DeliveryGQuy {
while (diligent) { whi | e(enpl oyed) {
P(pi zza); P(deliver);
P(nutex) ; make_pi zza();
num slices--; P(nut ex) ;
if (numslices==0) num slices=S;
/1 took last slice V(mut ex) ;
V(deliver); for (int i=0,i<S,i++) {
V(mut ex) ; V(pizza);
study(); }
} }
} }

Condition Variable Solution

int slices=0;

Condi tion order, deliver;
Lock mutex;

bool first = true;

Student () { Del i veryGuy() {
while(diligent) { whi | e(enpl oyed) {
mutex. I ock(); mutex. I ock();
if(slices >0) { order. wait (nutex);
slices--; makePi zza() ;
} slices = S;
else { first=true;
if(first) { nut ex. unl ock() ;
order. si gnal (mut ex); del i ver. broadcast();

first = false; }
del i ver. wait (nut ex) ;

nut ex. unl ock();
Study();

