* Reminders

n Project 1 due tomorrow by 6:00

n Office hours in 006 today at 4:30

n Start thinking about project groups (3
people) for the rest of the quarter
» Groups due by Tuesday noon (email anm@cs)
o After that we'll pick a group for you

n Today: project 1 questions

i Project 1 — issues

n C strings

n Copy_to/from_user and counters
n Syscalls: macros ; arguments

n Execvp, wait

n Other things??

* C strings

n You only need to use:

» strnemp(src,dest,256) — compare strings, 0 if equal,
not 0 o.w. Do not do strl == str2!!!
strtok:

. 1stuse: tok = strtok(buf, “delimiters");

o Subsequent uses: tok = strtok(NULL, “delimiters");
fgets(buf, 256, stdin) — read a line (up to 256 chars)
from stdin (or getline)

(maybe) strncpy(dest, src, 256) — copy up to 256
chars from src to dest.

n Fine to assume:
» A maximum length for a shell command (say, 256)
» Maximum number of arguments (say, 256 again)

(maybe) Allocate memory with malloc, free with free

3

i Passing counters

n Do not printk the statistics in execcounts!!!
n Execcounts should pass count values to the
shell
» The shell then prints out statistics
n Copying counters to userspace:
» Shell passes in something to hold data
» sys_execcounts fills the data in

* Copying data to/from kernel

n Unsafe to directly access user pointers!
long sys_gettineofday(struct timeval *tv)
{
ifo(tv) {
struct timeval ktv;
do_get ti meof day(&ktv);
if (copy_to_user(tv, &tv, sizeof(ktv)))
return - EFAULT;
}
return O;
}
n copy_to/from_user return amount of uncopied
data

* Syscalls

n Two ways to use one:

a Linux style:
« in <asm/unistd.h>:
#define _ NR foo 292
static inline _syscall2(int, foo, int, argl,
char *, arg2)
» In userspace, just call f oo(4, "test”);

» BSD style:
» in shell.c:
#define __NR foo 292
ret = syscall(__nr_foo, argl, arg2);

How syscalls work

In entry. S

ENTRY(system cal |)

pushl %ax # save orig_eax

SAVE_ALL

cnpl $(NR_syscal | s), %eax

j ae badsys

call *SYMBOL_NAME(sys_cal | _table)(, %eax, 4)

movl Yeax, EAX(%esp) # save the return val ue
restore_all:

RESTORE_ALL

* Execvp

n €xecvp:
» You must build an array of strings to pass to it
» Make sure the last thing in this array is NULL

» Make sure the array includes the program
name

* Wait

n wait(int *status)
» “man 2 wait” get information about it.
» “man wait” by default goes to the shell reference!
» What's wrong with this code:
int *status;
wait(status);

Fix??

i Extern

n How do we access global variables defined
in one file from another file?

* Other things

n Check that every malloc has a matching free
n Check for all errors

» E.g. malloc returns NULL

» Frequently, global constant errno will be set

n Use perror(“error description”); to see what the error
was.

» Don't worry about architectures other than x86.
n Don't worry about compiling the shell in vmware
» Compile on spinlock, transfer executable to vmware
n Q: “warning: implicit declaration of xyz” -- ???
» A: Check include files

