* Reminders

n Project 4 due Dec 10
» turnin only (include writeup)
n If you used your late pass on HW5
» Turn in to me, by Tue, Dec 7 at the latest.

n Today:
» Project 4 and file systems
» HW4 + Project 2 back (finally)
» HW4 average: 64.8/80
 Project 2 average: 74/85

* Project 4 first steps

n Go through the mechanics

» Compile the kernel & file system

» Boot VMWare with new kernel

» Install ramdisk, install cse451fs, mount, test
n Read the code

» Start with cse451fs.h

» Follow with mkfs & dir.c
n Start with increasing filename length

* cse451fs disk structure

‘ boot ‘superhlock ‘data map ‘inode hloc]{s‘ data blocks ‘

n Superblock: tells where all other things are
» Contains inode map:
» Bit array, tracks which inodes are currently in use
» E.g. for 3 dirs + 4 files, need 7 inodes
» Data map:
« Bit array, tracks which data blocks are in use

* cse451fs structure

Sample
Size: 1 1 1 85 4008

H boot ‘superblock ‘data map ‘iﬂode blocks‘ data blocks ‘

struct cse451_super _bl ock {

__ul6 s_nNuni nodes; /1 inode map is tail of superblock
__ul6 s_nDataMapStart; /1 block # of first data map block
__u32 s_nDat aMapBl ocks; /1 data map size, in blocks

__u32 s_nlnodeStart; /1 block # of first inode block
__u32 s_nNuni nodeBl ocks; /1 nunber of blocks of inodes
__u32 s_nDataBl ocksStart; // block # of first data bl ock
__u32 s_nDat aBl ocks; /1 nunber of blocks of data

__u32 s_nBusyl nodes; /1 nunber of inodes in use

__ul6 s_mmgic; /1 magi c nunber

char s_i map[0]; /1 name for inode nmap

* Superblock values

n For a 4mb disk:

Field Value

s_nNuminodes 1365

s_nDataMapStart 2

s_nDataMapBlocks 1

s_nlnodeStart 3

s_nNuminodeBlocks 85

s_nDataBlocksStart 88

s_nDataBlocks 4008

s_nBusylnodes 7

s_magic CSE451_SUPER_MAGIC (0x451F)

Inode structure

#def i ne CSE451_NUVDATAPTRS 13

struct cse451_inode {

u32 i_filesize;
u32 i_dat abl ocks[CSE451_NUVDATAPTRS] ;

__ul6 i_node; determines if file or dir
__ulé i_nlinks; (+ protection)

_ul6 i_uid;

_ulé i_gid;

» Inode size?
n Multiple inodes per block!
» How many for 1K block?
» mkfs decides how many inodes to create
» mkfs.cse451fs.c : create an inode for every three data blocks

Data blocks

» Blocks for files contain file data

n Blocks for directories contain:
#def i ne CSE451_MAXDI RNAVELENGTH 30
struct cse451_dir_entry {

—ui6 inode; Entry |Field | Value
char name[CsE451_MAXDI RNAVELENGTH] ;
1 0 Inode 1
Name
« Data block for / directory ! Inode 11
containing: Name -
etc bin 2 Inode 2
Name “etc”
» What's this dir’s inode number? |3 Inode fb_ _
» What is the “file size” Name in
in this dir’s inode? 4 Inode 0
Name 0

* Sample data block usage

For a 4MB file system with 1KB blocks
0/

0 etc

« passwd
. fstab
bin

» sh

. date
File/Directory Size Data Blocks
/ 4 entries + 1 null entry 1
Jetc 4 entries + 1 null entry 1
/bin 4 entries + 1 null entry 1
Jetc/passwd 1024 bytes 1
/etc/fstab 100 bytes 1
/bin/sh 10,000 bytes 10
/bin/date 5,000 bytes 5

Total: 20 8

* Project 4 requirements

n Increasing maximum size of files
« Be efficient for small files but allow large files
» Changing constant (=13) is not enough.

» Come up with a better design/structure for locating
data blocks.

» Don't have to support arbitrarily large files
. Fine to have constant new_max (but new_max >> old_max)
n Allow for longer file names

 Be efficient for short files names but allow large file
names

» Again, don't just change the constant

* Approaches for longer file names

» Combine multiple fixed-length dir entries into a
single long dir entry (win95)
» Itis easier if the entries are adjacent.

n Store long names in a separate data block, and
keep a pointer to that in the directory entry.
» Short names can be stored as they are.

n Put a length field in the dir entry and store
variable length strings

» need to make sure that when reading a directory, that
you are positioned at the beginning of an entry.

* Getting started with the code

n Understand the source of the limits in the
existing implementation
» Look at the code that manipulates dir entries
» mkfs code
« dir.c in the file system source code
n Longer file names:
» The code for will largely be in dir.c: add_entry() and
find_entry()
» In mkfs, change how the first two entries (for “.” and
..”) are stored
n Bigger files:
n super.c:get_block()

» References to i_datablock[] array in an inode will have
to change

* VFS vs cse451fs

» Don't conflate VFS structures and cse451fs structures!
» inodes, superblocks

» E.g., there are “two” inodes:
n VFSstruct inode
» Generic inode used in Linux source (works for any FS)
» Lives in memory
n cse451 struct cse451_i node
» Actual inode representation on disk

» inode. cicse451_read_i node converts from cse451_i node to
struct inode!
» Copies over mode, size, etc
» Copies over i_datablocks[] to st ruct i node’s generi c_i p field
(which will now be used as type cse451_i node_i nf 0)

» inode. cicse451_write_i node converts the other way

El

El

El

El

El

Linux Buffer Manager Code

Recall that blocks are cached in buffer cache
Main block data structure is buffer_head
Actual data is in buffer_head->b_data
For a given disk block, buffer manager could be:
» Complete unaware of it
» no buffer_head exists, block not in memory
» Aware of block information
« buffer_head exists, but block data (b_data) not in memory
» Aware of block information and data
» Both the buffer_head and its b_data are valid
To read a block, FS uses bread(...):
» Find the corresponding buffer_head
» Create if doesn't exist
» Make sure the data is in memory (read from disk if necessary)

Some buffer manager functions

cse451_bread(inode, block, create) |Get the buffer_head for the given disk
bl ock, ensuring that the data is in
menory and ready for use. |ncrements
ref count; always pair with a brelse.

bh = cse451_getbl k(inode, block, |Get the buffer_head for the given disk
create) bl ock. Does not guarantee anyt hing
about the state of the actual data
Increnents ref count; alvays pair with
a brelse. Zeros out new bl ocks
(required for security)

brel se(bh) Decrenment the ref. count of the given

buf fer

mar k_buf f er_di rty(bh) Mark the buffer nodified, meaning needs

to be witten to disk at sone point

mar k_buf f er _upt odat e(bh) I'ndicate that the data pointed to by bh

is valid.

s

Misc tips

All printk messages stored in /var/log/messages
« Easier to examine long debug outputs

Learn how to use bread/brelse by looking at
provided code

Q: It is extremely frustrating not to be able to
read debug messages because

they scroll off screen in vmware so quickly.

» A: Use Shift-pageup and Shift-pagedown

Q: what is dentry?

« Directory entry. dcache caches recently used dentries
(because searching directories is linear and slow)

