Reminders

n Homework 4 due next Friday
n Virtual Memory
n Rest of project 2 due next Friday
» Code due Thursday midnight
» Writeup in Friday’s lecture
n I have some old homework/projects
n Pick them up at the end

n Today:
 Project 2 parts 4, 5
» Scheduling/deadlock stuff

Project 2 — web server

n web/sioux.c — singlethreaded web server
» Read in command line args, run the web server loop
n web/sioux_run.c — the webserver loop
» Open a socket to listen for connections (I i st en)
» Wait for a connection (accept)
» Handle it
» Parse the HTTP request
» Find and read the requested file (www root is ./docs)

» Send the file back
» Close the connection

n web/web_queue.c — an empty file for your use

* What you need to do

n Make the web server multithreaded
» Create a thread pool
» A bunch of threads waiting for work
» Number of threads = command-line arg
» Wait for a connection
» Find an available thread to handle connection
» Current request waits if all threads busy

» Once a thread grabs onto connection, it uses
the same processing code as before.

Hints

n Each connection is identified by a socket returned
by accept

» Which is just an int

» Simple connection management

Threads should sleep while waiting for a new
connection

» Condition variables are perfect for this

Don't forget to protect any global variables

» Use part 2 mutexes, CVs

B

B

B

Mostly modify sioux_run.c and/or your own files
Stick to the sthread.h interface!

>

* Part 5 — Analysis

n You need to experiment with threads

n Two options:
» Experiment with part 4 webserver (probably w/pthreads)
» Experiment with something else that’s multithreaded

n Play around with parameters, come to some
conclusions, write a report

» Examples for webserver:
» number of threads in thread pool
» number of clients
o File size
» How you distribute the work to the thread pool

» Examples for matrix-multiply:
. Compare performance of user threads vs kernel threads

* Part 5 tools

n More accurate timer
n /cse451/projects/timer.tar.gz
» reads Pentium'’s cycle counter

» To find time, divide by processor speed
» examine /proc/cpuinfo

» Web benchmark
» /cse451/projects/webclient

» Takes in # of clients, # of requests/client, URLs to
request

n Use time command for command line timing

* Project questions?

Scheduling review

n FIFO:
+ simple
- short jobs can get stuck behind long ones; poor I/O device
utilization
n RR:
+ better for short jobs
- hard to select right time slice
- poor turnaround time when jobs are the same length
n SJF:
+ optimal (ave. waiting time, ave. time-to-completion)
- hard to predict the future
- unfair
n Multi-level feedback:
+ approximate SJF
- unfair to long running jobs

* A simple scheduling problem

Thread Arrival Time Burst Time
A 0 10

B 1 5

C 3 2

n FIFO Turnaround time: n» FIFO Waiting Time:

i A simple scheduling problem

Thread Arrival Time Burst Time
A 0 10
B 1 5
C 3 2
n FIFO Turnaround Time: n» FIFO Waiting Time:
» A: (10-0) = 10 " A0
. B: (15-1) = 14 o B:(10-1) =9
n C(17-3) =14 n C(15-3) =12
o (10+14+14)/3 = 12.66 o (10+9+12)/3 = 10.33

* A simple scheduling problem

n What about SJF with 1 unit delay? (just like HW)

Thread

Arrival Time

Burst Time

A

0

10

B

1

5

C

3

2

n Ave Turnaround Time: n Ave Waiting Time:
" B:5 n B: O
" C:7-3=4 " Ci5-2=3
o Ar145+2+10 = 18 n Al 1+5+2 =8
v (17+4+5)/3 = 8.67 « (0+3+8)/3 = 3.67

Wl

* Priority Inversion

n Have three processes
» P1:Highest priority; P2:Medium; P3:Lowest
» Have this code:
P(mut ex) ;
critical section;
V(mut ex) ;
» P3 acquires mutex; preempted
n P1 tries to acquire mutex; blocks
n P2 enters the system at medium priority; runs
n P3 never gets to run; P1 never gets to run!!

n This happened on Mars Pathfinder in 1997!
n Solutions?

Deadlock review

n Deadlock solutions
n Prevention
« Kill one of necessary conditions
» Avoidance
» Banker’s algorithm (Dijkstra)
n Detection & Recovery
» The Ostrich Algorithm
» “Put your head in the sand"

« If each PC deadlocks once per 100 years, the one reboot may
be less painful that the restrictions needed to prevent it.

» Not a good strategy for a nuclear reactor!
» Livelock
» Processes run but make no progress

* Deadlock

n Given two threads, what sequence of calls
causes the following to deadlock?

/* transfer x dollars froma to b */
voi d transfer(account *a, account *b, int x)

P(a->sem);
P(b->semn):
a- >bal ance += x;
b- >bal ance -= x;
V(b->senm);

V(a->senm) ;

* Deadlock Questions

n Can there be a deadlock with only one process?

n In a system w/Banker’s algorithm, which of the
following can always be done safely?
» Add new resources
» Remove resources

Increase Max resources for one process

Decrease Max resources for one process

Increase the number of processes

Decrease the number of processes

* Deadlock Questions

n Can there be a deadlock with only one process?
» Yes, P(sema); P(sema);
» In a system w/Banker’s algorithm, which of the
following can be done safely?
» Add new resources
» Remove resources
» Increase Max for one process
» Decrease Max for one process
» Increase the number of processes
» Decrease the number of processes

* Banker’s Algorithm practice

Allocation Max Available
A[BJC[DJ[A][B]JC]ID[A]B[C]D
PO ofJofJa]2)ololal2fa[5s5]2]0
P1 1[ofofoJ1]7]5]o0
P2 1[3[s5]4l2]3]|5]6
P3 ol6]3]2flofle6[5]2
P4 ofofJ1]4]ole6]5]s

n Is the system in a safe state?

» If a request from P1 arrives for (0,4,2,0), can the
request be satisfied immediately?

* Banker’s Algorithm practice

Allocation Max Available Need
A[BJCJDJATB]JCID[ATBJC]D]A]B]C]D
PO oJofzl2ffofola]2)zss[2]ofo]Jo]Jo]o
P1 1lofofJoff1]7]5]0 o[7[s5]o0
P2 113[s5]4af2]3]5]6 1]ofo]>2
P3 o[6[3]2]o]e6[5]2 oJof2]o
P4 ofoJ1T4)o]e6[5T6 o[64a]2

n 1st step: figure out Need[] vector

n Is the system in a safe state?

» If a request from P1 arrives for (0,4,2,0), can the
request be satisfied immediately?

Banker’s Algorithm practice

Allocation Max Available Need
A[BJCID|[A[BJCID|[A[BJCIDJA[BJC][D
PO oJolil2foJo[1[2|1[5[2]0o][o[ofo]o0O
P. 1]0j]0J0fl1]7]5]0 of7]5]0
P. 11315142 516 1101012
P o]l]6[3[2]0 52 ofof2fo0
P4 ojfof1]4]0 5[6 0]6[14]2

n Is the system in a safe state?
. Yes: <P, P3, P2, P4, P1>
» If a request from P1 arrives for (0,4,2,0), can the
request be satisfied immediately?
» Yes:e.g. <P0O, P2, P1, P3, P4>

