* Reminders

n Homework 3 due Monday, Oct. 25
» Synchronization

n Project 2 parts 1,2,3 due Tuesday, Oct. 26
» Threads, synchronization

n Today:
~ Project 2 continued (parts 2,3)
» Synchronization

* Project 2 Part 1 Questions

n Anything about writing user threads?

n Recall that:

» sthread_create doesn't immediately run the new
thread

» sthread_exit can ignore its ret argument
n Recall how stacks are allocated

. sthread_new ct x — creates a new stack and makes it
ready to run after first context switch

st hread_new bl ank_ct x — create new stack but don’t
initialize. Suitable to use as ol d parameter to switch().

n Read .h files for function specs!

* Synchronization

n Why do we need it?
» ensure correct and efficient cooperation
» Prevent race conditions
n How?
 Protect code in critical sections
» Allow at most one process/thread in critical section

» Maintain fairness & progress
» Don’t make deadlocks

* Synchronization Solutions

High-level
n Monitors
n Java synchronized method

0OS-level support
n Special variables — mutexes, semaphores, condition vars
n Message passing primitives

Low-level support
n Disable/enable interrupts
n Atomic instructions

+ Software algorithms ... 4

Disabling/Enabling Interrupts

Thread A Thread B:
di sabl e_interrupts() di sabl e_interrupts()
critical _section() critical _section()
enabl e_i nterrupts() enable_interrupts()

n Prevents context-switches during execution of CS
n In Linux: cli(), sti()
n Sometimes necessary

» E.g. to prevent further interrupts during interrupt
handling

n Problems?

* Hardware support

n Atomic instructions:

» Test and set

n Swap

» Compare-exchange (x86)

» Load-linked store conditional (MIPS, Alpha, PowerPC)
n Use these to implement higher-level primitives

» E.g. test-and-set on x86:

int atomic_test_and_set(lock_t *I) {
int val;
_asm {
mov edx, dword ptr [1] ; Get the pointer to |
nov ecx, 1 ; load 1 into the cnpxchg source
nov eax, 0 ; load 0 into the accunul ator
; if 1 ==0 then
I ock cnpxchg dword ptr [edx], ecx ; | =1 (and eax = 0)
; else
H I =1 (and eax = 1)
nov val, eax ; set eax to be the return val

}
return val;

* Software algorithms

n book, p. 193

n Example algorithm for two processes 0 and

1, P, does this:

while(1l) {
while(turn !'=1i) ;
<critical section>
turn = 1-i;

}

n What's wrong with it?

Hyman’s Algorithm

n bool flag[2];
int turn;
void Protocol (int id) {
while(true) {

1 flag[id] = true;
2 while(turn !'=id) {
3 Mile$flag[l-id])
4 ;% Spin */
5 turn = id;
6 <Critical Section>
7 flag[id] = fal se;
8 <rest of code>

}
}

Two processes: PO, P1

flag initialized to {false, false}, turn to 0
“Elegant”

Wrong — why?

Hyman’s Algorithm

n bool flag[2]; Timeline:
int turn; P1| PO
void Protocol (int id) { |
ile(true) { .
1 flag[id] = true Ll flagl1]==true
2 while(turn = id) { 2|
3 Wnile;flag[l-id]) 3
4 i /* Spin */ .
N turn = id: |1 f1ag[0] ==t rue
| 2
6 <Critical Section> |6
7 flag[id] = fal se; 5 Curn==1
8 <rest of code>
} 6 | nmutual exclusion
} has been vi ol at ed

n Plexecutesi, 2,3
n POexecutes 1,2, 6
n P1executes 5, 6

Semaphore review

n Semaphore = a special variable
» Manipulated atomically via two operations:
» P (wait)
» V (signal)
» To access critical section:
» P(sema)
. <critical section>
» V(sema)
n Has a counter = number of available resources
n Has a queue of waiting threads
» If execute wait() and semaphore is free, continue
» If not, block on that waiting queue

n signal() unblocks a thread if it's waiting

* Synchronization in Project 2

n Part 2: write two synchronization primitives

» Implement mutex (binary semaphore)
» How is it different from spinlock?
» Need to keep track of lock state
» Need to keep waiting threads on a queue
» Inlock(), may need to block current thread
» Don't put on ready queue
» Do run some other thread
» For unlock(), need to take a thread off the waiting
queue if available

* Condition Variable

n A“place” to let threads wait for a certain
condition or event to occur while holding a lock
(often a monitor lock).

n It has:
» Wait queue
» Three functions: wait, signal, and broadcast
» wait —sleep until condition becomes true.
» Ssignal —event/condition has occurred. If wait queue
nonempty, wake up one thread, o.w. do nothing
Do not run the woken up thread right away
FIFO determines who wakes up
» broadcast — just like signal, except wake up all threads (not
just one).
» In part 2, you implement all of these

Condition Variables 2

n More about cond_wai t (st hread_cond_t
cond, sthread_nutex_t | ock):
n Called while holding | ock!
» Should do the following atomically:
» Release the lock (to allow someone else to get in)
» Add current thread to the waiters for cond
» Block thread until awoken

» After woken up, a thread should reacquire its lock
before continuing

n How are CVs different from semaphores?
n More info: man pt hread_cond_wai t
» We follow the same spec for wait, signal, bcast

* Monitors: preview

n One thread inside at a time
n Lock + a bunch of condition variables (CVs)

n CVs used to allow other threads to access the
monitor while one thread waits for an event to occur
waiting queue of threads

.g shared data
trying to enter the monitor l:|

00— O 1

in monitor at a operations (procedures)
time

* No preemption

n You get atomic critical sections for free
n However, you should understand what to
do if you had preemption
n Mark critical sections with comments
~ Describe appropriate protection that might
apply (e.g. spinlock).

Part 3 problem

n N cooks produce burgers & place on stack
n M students grab burgers and eat them
n Provide correct synchronization
» Check with your threads and pthreads!
n Print out what happens!
n sample output (rough draft):

cook 2 produces burger #5
cook 2 produces burger #6
cook 3 produces burger #7
student 1 eats burger #7
student 2 eats burger #6
cook 1 produces burger #8
student 1 eats burger #8
student 1 eats burger #5

* Synchronization — Important Points

n Necessary when multiple threads have access to
same data

n Can't use some primitives in interrupt handlers
» Why? Which ones?

» Don't forget to release lock, semaphore, etc
» Check all paths

n Synchronization bugs can be very difficult to find
» Read your code

* Homework questions?

n Sleeping barber problem
n Cigarette-smoker problem

Sample synchronization problem

Late-Night Pizza
» A group of students study for cse451 exam
n Can only study while eating pizza
» Each student thread executes the following:
. while (1) {
pick up a piece of pizza;
study while eating the pizza;
}
n If student finds pizza is gone, the student goes to sleep
until another pizza arrives
n First student to discover pizza is gone phones Pizza Hut
and orders a new one.
» Each pizza has S slides.

* Late-Night Pizza

n Synchronize student threads and pizza
delivery thread

n Avoid deadlock
n When out of pizza, order it exactly once

n No piece of pizza may be consumed by
more than one student

Semaphore solution

shared data:
semaphore pizza; (counting sema, init to 0, represent
nunmber of availabl e pizza resources)
semaphore deliver; (init to 1)
int numslices = 0;

semaphore nutex; (init to 1) // guard updating of numslices
St udent { DeliveryGuy {
while (diligent) { whi | e(enpl oyed) {
P(pi zza) ; P(deliver);
P(nut ex) ; P(nut ex) ;
numslices--; num slices=S;
if (numslices==0) V(mut ex) ;
/'l took last slice for (int i=0,i<Si++) {
V(deliver); V(pi zza);
V(nut ex); }
study(): }
} }

* Condition Variable Solution

int slices=0;

Condi tion order, deliver;
Lock nut ex;

bool first = true;

Student () { Del i veryGuy() {
whi l e(diligent) { whi | e(enpl oyed) {
mutex. | ock(); mutex. | ock();
if(slices >0) { order. wait (nutex);
slices--; nmakePi zza();
} slices = S;
else { first=true;
if(first) { del i ver.broadcast (nutex);
order. si gnal (nutex); nut ex. unl ock();
first = false; }

del i ver. wait (nutex);

mut ex. unl ock() ;
Study();

