
1

CSE 451
Fall 2003

Section
11/20/2003

Questions from lecture

Questions from homework

• Subdirectories as files
• Implementing a referenced bit

Questions from project

Info on next project

• Extending a
file system

File systems in linux
• Implement standard interface

– file_operations
• read/write/seek files
• read directory

– inode_operations
• create / lookup / unlink / mkdir / rmdir / rename

– super_operations
• read/write inodes

– address_space_operations
• readpage/writepage for memory-mapped IO

– file_system_operations
• read in superblock

2

FS storage

• File system is layered on top of a block device
– Device provides ordered list of blocks
– Blocks are cached in the buffer cache

• File systems access blocks through:
– getblk() - gets a cached block
– bread() - reads a block
– mark_buffer_dirty() / brelse - marks buffer as changed

and releases to kernel (which does the writing)

FS overview
• File system layout created in mkfs

– initializes on-disk data structures
• superblock
• datablock map - bitstring of in-use data blocks
• empty root directory (just links for self & parent)

• Superblock contains file system parameters
– e.g. block size, # of blocks, # of inodes, inode of root

directory
• Changing on-disk layout requires changing mkfs

– setup_tables()
– make_root_dir()

cse451_fs layout

• Inodes contain:
– mode
– nlinks
– uid/gid
– filesize
– array of block numbers for data

Root
Block

Super
Block

Block
Map

Inode
Blocks

Data
Blocks

• Directories are:
– array of:

• inode # (0 == empty)
• char name[30]

– # of entries set by file size

File Layout

• Inode contains array
of blocks for the file

• File size is limited by
fixed number of fixed
size blocks

• # of files is limited by
of inodes

inode

4
8
12
0
0

File System Operation
• On load:

– super.c:cse451_read_super() loads FS structures off
disk

• create a file:
– dir.c:cse451_create() creates directory entry

• lookup file:
– dir.c:cse451_lookup() scans directory for file name

• read/write
– uses memory mapped I/O: mmap.c: cse451_readpage(),

cse451_writepage()
– calls super.c:get_block() to read/write a specific block

of a file

What you have to do

• Fix at least 2 limitations
– Increase name length from 30 characters
– Increase number of files from 8000
– Increase max file size from 13 kb

3

File Systems Advanced Topics

• Problems
– Corruption

• If you create a file, and you crash before adding it to
a directory, what happens?

• If you add the file to the directory, and crash before
creating the file itself, what happens?

• If you free a block in the bitmap before you delete
the file inode, what happens?

Old Fashioned Solution
• fsck (unix) or chkdsk (windows)

– Walk through the entire file system and check for
consistency:

• All files are in directories
• All blocks marked busy are in files
• All directory entries point to files

– Clean It up!
• move files without directories to a standard place
• free up unused blocks
• etc.

• Problem: slow

Journaling

• Problem stems from interrupting operations
– .e.g doing 1/2 of a file create or delete

• Solution: do what databases do
– Write to a log what you are going to do
– Then do it
– Then write down that you did it

• On a crash
– Just check what hasn’t been finished yet and finish it

Example:

• create file foo/bar
– allocate blocks for foo
– allocate inode for foo
– write to directory entry in bar
– write data for bar

Drawbacks

• Need to store journal somewhere and write
to it before every metadata operation
– requires additional seeks
– Can be avoided by delaying metadata writes for

a while and only writing to journal

Storage Systems

• Scalability is a big problem today
– How do you build a file system for 100 TB?

• Lots of disks
• Too much I/O for one computer to handle

– (e.g. PCI bus max bandwidth is 133 megabytes/sec)

• Approaches:
– Network-attached storage
– Storage area networks

4

Network attached storage
• Get rid of the computer
• Put the file system in the disk drives
• Benefits:

– Removes bottleneck of a server operating system
– Optimized just for serving up files
– Used for users / single-machine applications accessing

shared data
• Drawbacks

– Still limited to one machine for a filesystem

Storage area networks
• Put the disk drives on the network directly
• Have computers read & write blocks remotely
• Benefits:

– Can scale to huge numbers of disks / huge bandwidth
– Used for clusters accessing shared data

• Drawbacks:
– Computers must coordinate file system operations to

avoid conflicts at the block level
– Computers must be trusted with access to blocks - file

system security is not applied

