
1

CSE 451: Operating Systems
Winter 2005

Course Introduction

Steve Gribble

12/28/04 © 2005 Steve Gribble 2

Today’s agenda

• Administrivia
– course overview

• course staff
• general structure
• your to-do list

• OS overview
– functional

• resource mgmt, major issues
– historical

• batch systems, multiprogramming, time shared OS’s
• PCs, networked computers

12/28/04 © 2005 Steve Gribble 3

Course overview

• Everything you need to know will be on the course web
page:

http://www.cs.washington.edu/education/courses/451/CurrentQtr

12/28/04 © 2005 Steve Gribble 4

• But to tide you over for the next hour …
– course staff

• Steve Gribble
• Alex Moshchuk
• Saurav Chatterjee

– general structure
• read the text prior to class
• class will supplement rather than regurgitate the text
• sections will focus on the project
• we really want to encourage discussion, both in class and in

section

12/28/04 © 2005 Steve Gribble 5

– your to-do list …
• please read the entire course web thoroughly, today
• please get yourself on the cse451 email list, today, and check

your email daily
• homework 1 (reading + problems) is posted on the web now;

due Friday
• project 1 will be posted on the web Wednesday and will be

discussed in section on Thursday; due a week from Friday

12/28/04 © 2005 Steve Gribble 6

Registration Stuff

• If you’re going to drop this course
– please do it soon!

• If you want to get into this course
– make sure you’ve filed a petition with the advisors

2

12/28/04 © 2005 Steve Gribble 7

What is an Operating System?

• An operating system (OS) is:
– a software layer to abstract away and manage details of

hardware resources
– a set of utilities to simplify application development

– “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

12/28/04 8

DOS

What is Windows?

Application

© John DeTreville, Microsoft Corp.

12/28/04 9

DOS

What is Windows?

Windows

Installer

COM

Printing

TCP/IPBrowser

……

……

Application

Application

© John DeTreville, Microsoft Corp. 12/28/04 10

Internet

What is .NET?

Application

© John DeTreville, Microsoft Corp.

12/28/04 11

magicmagic

Internet

What is .NET?

.NET

Device
independence

XML

Identity
& security

AsynchronyExtensibility

……

Application

eBay FedExBank

© John DeTreville, Microsoft Corp.
12/28/04 © 2005 Steve Gribble 12

The OS and hardware

• An OS mediates programs’ access to hardware
resources
– Computation (CPU)
– Volatile storage (memory) and persistent storage (disk, etc.)
– Network communications (TCP/IP stacks, ethernet cards, etc.)
– Input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
– processes (CPU, memory)
– files (disk)

• programs (sequences of instructions)
– sockets (network)

3

12/28/04 © 2005 Steve Gribble 13

Why bother with an OS?
• Application benefits

– programming simplicity
• see high-level abstractions (files) instead of low-level hardware

details (device registers)
• abstractions are reusable across many programs

– portability (across machine configurations or architectures)
• device independence: 3Com card or Intel card?

• User benefits
– safety

• program “sees” own virtual machine, thinks it owns computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

12/28/04 © 2005 Steve Gribble 14

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources

ensured?
– protection: how is one user/program protected from another?

• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with

hardware or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information,

including across a network?

12/28/04 © 2005 Steve Gribble 15

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

12/28/04 © 2005 Steve Gribble 16

Progression of concepts and form factors

© Silberschatz, Galvin and Gagne

12/28/04 © 2005 Steve Gribble 17

Multiple trends at work

• “Ontogeny recapitulates phylogeny”
– Ernst Haeckel (1834-1919)

• (“always quotable, even when wrong”)

• “Those who cannot remember the past are
condemned to repeat it”
– George Santayana (1863-1952)

• But new problems arise, and old problems re-define
themselves
– The evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

– But the ubiquity of PCs re-defined the issues in protection
and security

12/28/04 © 2005 Steve Gribble 18

Protection and security as an example

• none
• OS from my program
• your program from my program
• my program from my program
• access by intruding individuals
• access by intruding programs
• denial of service
• distributed denial of service
• spoofing
• spam
• worms
• viruses
• stuff you download and run knowingly (bugs, trojan horses)
• stuff you download and run unknowingly (cookies, spyware)

4

12/28/04 © 2005 Steve Gribble 19

OS history

• In the very beginning…
– OS was just a library of code that you linked into your

program; programs were loaded in their entirety into
memory, and executed

– interfaces were literally switches and blinking lights
• And then came batch systems

– OS was stored in a portion of primary memory
– OS loaded the next job into memory from the card reader

• job gets executed
• output is printed, including a dump of memory (why?)
• repeat…

– card readers and line printers were very slow
• so CPU was idle much of the time (wastes $$)

12/28/04 © 2005 Steve Gribble 20

Spooling

• Disks were much faster than card readers and
printers

• Spool (Simultaneous Peripheral Operations On-Line)
– while one job is executing, spool next job from card reader

onto disk
• slow card reader I/O is overlapped with CPU

– can even spool multiple programs onto disk
• OS must choose which to run next
• job scheduling

– but, CPU still idle when a program interacts with a
peripheral during execution

– buffering, double-buffering

12/28/04 © 2005 Steve Gribble 21

Multiprogramming

• To increase system utilization, multiprogramming
OSs were invented
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of a job with computing of another

• while one job waits for I/O completion, OS runs instructions
from another job

– to benefit, need asynchronous I/O devices
• need some way to know when devices are done

– interrupts
– polling

– goal: optimize system throughput
• perhaps at the cost of response time…

12/28/04 © 2005 Steve Gribble 22

Timesharing

• To support interactive use, create a timesharing OS:
– multiple terminals into one machine
– each user has illusion of entire machine to him/herself
– optimize response time, perhaps at the cost of throughput

• Timeslicing
– divide CPU equally among the users
– if job is truly interactive (e.g. editor), then can jump between

programs and users faster than users can generate load
– permits users to interactively view, edit, debug running

programs (why does this matter?)
• MIT Multics system (mid-1960’s) was the first large

timeshared system
– nearly all OS concepts can be traced back to Multics

12/28/04 © 2005 Steve Gribble 23

Distributed OS

• distributed systems to facilitate use of geographically
distributed resources
– workstations on a LAN
– servers across the Internet

• supports communications between jobs
– interprocess communication

• message passing, shared memory
– networking stacks

• sharing of distributed resources (hardware, software)
– load balancing, authentication and access control, …

• speedup isn’t the issue
– access to diversity of resources is goal

12/28/04 © 2005 Steve Gribble 24

Parallel OS

• Some applications can be written as multiple parallel
threads or processes
– can speed up the execution by running multiple

threads/processes simultaneously on multiple CPUs
– need OS and language primitives for dividing program into

multiple parallel activities
– need OS primitives for fast communication between

activities
• degree of speedup dictated by communication/computation

ratio
– many flavors of parallel computers

• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)
• NOWs (networks of workstations)
• computational grid (SETI @home)

5

12/28/04 © 2005 Steve Gribble 25

Embedded OS

• Pervasive computing
– cheap processors embedded everywhere
– how many are on your body now? in your car?
– cell phones, PDAs, games, iPod, network computers, …

• Typically very constrained hardware resources
– slow processors
– small amount of memory
– no disk
– typically only one dedicated application

• But technology changes fast
– embedded CPUs are getting faster
– 1” disks are changing things, e.g., iPod mini (4GB)

12/28/04 © 2005 Steve Gribble 26

CSE 451

• In this class we will learn:
– what are the major components of most OS’s?
– how are the components structured?
– what are the most important (common?) interfaces?
– what policies are typically used in an OS?
– what algorithms are used to implement policies?

• Philosophy
– you may not ever build an OS
– but as a computer scientist or computer engineer you need

to understand the foundations
– most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

