2 I

Advanced C for the 1337 kernel h@xOrs

Albert Wong (awong at cs dot washington dot edu) CSE 451 - wi03

What isC
Cisaprocedura language.
This means there is no language support for writing OO code.
However, you can still write OO code. You just haveto do it
manually. Thisissimilar to Java having language features for
synchronizing threads and C/C++ not. Y ou can still do
multithreaded codein C/C++.

Major syntactic differencesin C

¢ Therearenoclasses. StructsareNOT the same
classesasthey arein C++.

¢ Youcanonly declare variables at the top of ablock
(after an opening brace) before any other kind of
statement (except perhapstypedefs).

¢ Thereisno new/delete operators. Only malloc and
free functions.

. You usevoid*salot in C data structures.

Fhe-C-Preprocesser —ntroduction—-—-—-—-—--

The preprocessor deals strictly in text. Hereisalist of the standard
preprocessor directives and macros excluding #define.

« #include<filename>, #include*“ filenameé' — expandsinto contents of the
givenfileinto current position. The <> meansto search the
standard include path for the file while the“” meansto search the
current directory.

« #error message, #warning message — Causes the compiler to either halt
or issueawarning if thislineisreached. Useful for debugging.

« #pragma —Passes options to the compiler. Options change from
compiler to compiler

« #if condition, #elsif condition, #endif —Includes or excludes a block of
text dependent on the value of the condition. #if Oisuseful for
removing ablock of code from complication.

« FILE_,_LINE_,_ DATE_ ,_ func__— thesemacrosexpand
into strings representing the current file, line, date, and in c99, the
current function.

Fhe-C-Rreprocessor— #defire basies-—-—-—-—--

#definemacros
#define SOME_LABEL To some list of literals

#idefine MIN(xY) () < () ? () : (¥)
#define printf(x,...) fprintf(stdout, x, __VA_ARGS_)

« Macros can be used for quick and dirty constants.

Thoughisit often preferable nowadaysto do:
const T name = value;
where T isatype. Thisis because this creates a variable withtype info.

« Macroscan be used to like functions. Think of them as a pattemed
search and replace.
Some simple functions ae often |mp|emented asjust a#define macro.
Common examples are “min” and “printf.” Many librariesimplement themina
fashion similar to the examples above.

You can even do variable argument macros by putting an elipse (“...") inthe

parameter list. Thetag __VA_ARGS__ expandsto al the extra argumentswith

the comma. (Y ou may notice a problem with our definition of “printf” given

our explanation of _ VA_ARGS__. Most compilers extend the behav ior of
__VA_ARGS__ expansion to make up for this problem.)

TheCPreprocessor = #define Tunl — — — — ~
#define macr os string manipulation operators
#define concat(xy) Xy
#define mkstr(x) #x
« ## performsaconcatenation of the two preprocessor arguments.
This may be useful for autogenerating mangled names or some other sort of
textual manipulation. Thus,
concat(wordAwordB)
is equivalent to
wordAwordB

« #makesthefollowing macro argument astring (with quotes).
It also chomps whitespace so everything isonly 1 space. Thus:

mkstr(bu hahaha me lolo weeeeeeee)
becomes

“bu ha ha ha me|o |0 weeeeeeee”

Basic Ctype methanisms—"fypédefs — "~ — — °~

Typedefs

typedef unsigned char byte;
typedef struct Name { int id; } Name;
typedef int (* Comparator)(void*, vom*)

* Typedefsareaway of creating aliasesfor atype.
The example above makes byte have the same meaning to the compiler
as unsigned char.

* Youusetypedef for 3reasons.
— Making ashorthand dias.
Thisis often done with structs and function pointers.

— Adding an extralevel of abstractionsto the type.
Say you' re waffling between using ashort intor alongint.

— Designating alogical difference.
A byte is the same as an unsigned char, but when you see “byte’
you think of 8 bits where when you see “char” you think of ‘a or
something similar.

Structs
struct student { int id; char name[80]; };
« Structsaremeant for designating amemory structure.
They ensure that the items in a struct are arranged in a particular order
in memory.

« They arenot classes.
There is no language implemented support for inheritance or methods.
However, with some discipline, one can simulate the functionality pretty
well for the most part.

« Thereareno protection facilities (everything is public)

* Youusestructsfor 2 reasons
— Orderingmemory
Because structs guarantee a memory layout, they are useful for
communicating with hardware.

— Groupingrelated items
Thisis more common usage, though it is kind of a side effect of
the ordering behavior. You can use thisto create really dumb
“objects’.

Union - Unioned types
union someUnion { int asint; double asDouble; };

Gives onelocation in memory, multiple type interpretations.
Thisis probably one of the more uselesstypes...unlessyou're
implementing some sort of polymorphism or talking to hardware.

Y ou use unions for 3 reasons
— Youwant to save memory and you need to at any giventime
represent one of anumber of types.
You can use a union to declare a variable that represents those
types.

— You need alocation in memory to have morethan 1
semanticmeaning.
This may happen if you are talking to hardware (a memory mapped
register may have more than 1 type it represents). Or it may
happen in parameter passing or some other esoteric situations

— You want to screw with someone’s head.
‘nuff said.

Basic G-type-mechanisms—-enums —- — - —-—-—--

Enums - enumerated types
enum Color { RED, GREEN, BLUE };

« Createsatypewith alimited set of label values.
« Createsamapping fromalabel to auniqueinteger.

« You useenumsfor 2 reasons
— Making an “option” type
You can restrict the values assigned to the enum so thisis a
natural usage.

— Integral constants (kind of amisuse)
Since enums values are in effect, integers, they can be used as
constants. Thisiskind of ahack, but it iscommon. You can
assign specific numbers to each enumvaueif you want.

Basie Gtype mechanisms—-peinters—

Pointer s - memory locations
T *name = NULL;

Pointers are variables that hold a number representing alocation
in memory.

Pointer arithmetic increments by units of type, not by address
location. short n; is2 bytes. So short *pn = (short*)10; pn++;
will yield pn == (short*)12. i

Pointers are the size of the natural machine word. That means
they arethe same sizeasanint or asize t.

Pointers to functions do not need to explicit dereference syntax to
useit. The compiler will do it implicitly for you.

Use pointers toconst typesif you wish to passwithout requiring a

copy.

Advanced Ctypes—arrays

Arrays - homogenous block of 1 type
T name{ 30];

« ARRAYSARE NOT POINTERS

« Arraysarenot Ivalues You cannot say “name=& var;” or
anything similar.

« Thearray nameisthelocationin memory. Itisnot avariable
holding an address of alocationin memory. Thereisno space
allocated for holding the address; it is resolved at compiletime.

* Arrayshavedimension. You can declare pointersto arrays of a
specific dimension: char (*)name[3];. Thisisapointer to an
array of 3 chars.

AdvancedTtypes=vod* ~— T T T T T T T

Void Pointers
void *ptr;

Void pointers are refer to ageneric untyped location in memory.
That means they have no type.
Y ou must cast avoid * to atyped pointer beforeusingitin C.
Any pointer will beimplicitly promoted to avoid* on assignment.
'Y ou cannot perform pointer arithmetic on avoid*.
If you want to do arithmetic on the pointer in terms of memory
aﬂdr&sss(rather thanin terms of types), cast it to an unsigned
char*.
You use void* for 2 reasons
— Genericprogramming
They are the analogue to Java's Object type. Indeed they are even
more general. For this reason, they are actually used more
sparingly.

— Generic memory reference.
Sometimes you really mean “thisis just achunk of memory.” Often
times, this | represented as either avoid* or achar*. One exanple
of where void* is used isin maloc and free (the analogues to new
anddelete).

Function Pointers
int (*name)(int param, int param);

« Functionsare just blocks of code at some location in memory.
Thusthey can be pointed to. :)

« Thetypeof afunction can be determined by its signature (return
type and parameter list).

« Thesyntax for adeclaring afunction pointer isugly, but you do
not néed to dereference the pointer to useit. Thus, after the above
example, both name(1,2); and (*name)(1,2); are valid.

« Often, onetypedefs function pointers before using it.

typedef int (* Comparator)(void* void*);
Creates a typedef called “Comparator” for functions with the signature
int (void* ,void*). Now, you can cast, and declare pointersof this type by
just saying Comparator foo; or (Comparator) myptr ;

* Youusevoid* for 1 reasons
— Generic programming where the functionisonly known a
runtime.
If you have a hash table where you would like to be able to define a
hash function on creation, you can makeits initializer take a
function pointer to a hash function.

Inline
int inline func(void);

» Thefirstruleof inlineis, don't useit.

* Thesecondruleisif you really are going to, make sure you know
why you aregoing to doit.

* Inline hints to the compiler that this function should be unrolled an
inlined into wherever itiscalled. Thiscan avoid function call
overhead.

» Problemswithinline:

— The compiler may happily ignore this. It's kind of like theregister
keyword in this manner. It is merely a hint; it is not acommand.

— The compiler often knows better than you. 1t'll inline for you
anyways if something is small enough and inlining seems smart.

— You may (and probably will) make your program size larger.

— You may make your program slower. Read the previousbullet as
“cache miss’ or “page fault”.

Inlineisacompiler hint. It really hasno placein ahighlevel
language, but it is here because C isn’'t completely high level.

Advaneed-C-type-modifiers— statie; extern —-—--
Static

staticint func(void);
static int i;
int foo() { staticinti = 4; ...}

* Statichas2 meaningsin C (3in C++).

— Restrict the visibility of the current identifier to the current
translation unit. Essentialy, makeit privateto afile. The
equivalent in C++ is an anonymous namespace.

— Allocate memory for the following variable in the static memory

. region (not on the stack or the hgag} K

« saticlocal variables have their initializer called only once during a
program'’ slifetime (somewhere beforefirst usage, usually at
program load).

* uninitialized static variables are by defaulted zeroed.

« satic variablesin header files are only done by the braindead.

« satic functionsin header filesthat are not inline are only done by
the braindead or the incredibly wise.

Advanced-c-type-modifiers ~—const—volatile; restrict

const

constinti = 5;

const char *buf;

» const doeswhat it implies; it makes something constant.

« Itisofficialy part of c99, but has been floating around many
compilers(including gec) for awhile.

* Itdoesisvery useful with pointersto make a safe passw/o copy
argument.

volatile
volatileint i = 5;
volatile void *ptr;
« volatile tells the compiler to not optimize this variable.
» Oftenitisused when accessing hardware. 1t meansthat the
compiler cannot even assumethat inthecode: i = 4; if (i==4) {.. }
theif block will necessarily execute sincei may have changed.

restrict
void strepy(char restrict *ptr, char restrict *ptr2);

« Resirictisac99 extension that tellsthe compiler that all pointers
under the current context refer to mutually exclusive objects.
« Itisfor optimization purposes only. Don't use unless you really

know what you aredoing.

Advarced CType modifiers—extern — — — ~

extern

externint func(void);
externint i;

« extern tellsthe compiler to not generate storage for the following
variable.

« Function prototypes are by defaultextern. (Just like loca variables
are by default auto.)

« All global variablesin a header file shall be declared extern on
pain of link error.

« All externedvariables or functions must be allocated storage
somewhere. |t must only be allocated storage once!!!!

« Thereisno protection for mismatching the definition of the
variable with the declaration in 2 different trandation units. That
mansif you definei to be char i; in foo.c and then declareit as
externint i; in main.c and then useit, your code will compiler and
link, but you will have problems.

« _ attribute . Thisisagec compiler extensionthat allowsyouto
specify extra attributes to the compiler for avariable or funcion
such aswhich memory segment it should goiin.

» InC, you must explicitly sayvoid in your function parameter list,
otherwise, the compiler thinksthat you have avariable argument
list (like printf).

* Toexplicitly declareavariable argument list, you write put an
ellipsefor your last argument.

« If you do not declare afunction before trying to useit, C
automatically assumesit has areturn type of int and that it takes
variablearguments. .

o printf(“ %x\n”,...) isyour friend.

» static variables cannot be affected by stack corruption. Useful for
debugging. Don't leaveit in your production code though.

