Preemption

Set timer interrupts
Switch threads on interrupt
Same idea as other switches

But now, must synchronize
Two tools:

Enable/disable interrupts
test_and_set(), clear()



Preemption (cont’d)

Enable/disable interrupts to

synchronize thread code
int old = splx(HIGH) // disable
splx (old) // re-—-enable

Use test and set for other stuff
Why not disable interrupts?



Multi-thread web server (1)

web/sioux.c — singlethreaded web server
Read in command line args, run the web server
loop
web/sioux_run.c — the webserver loop
Open a socket to listen for connections (1isten)
— = Wait for a connection (accept)

Handle it
e Parse the HTTP request
e Find and read the requested file (www root is ./docs)
e Send the file back
e Close the connection

web/web_queue.c - an empty file for your
use




Multi-thread web server (2)

Make the web server multithreaded

Create a thread pool
e A bunch of threads waiting for work
e Number of threads = command-line arg

Wait for a connection
Find an available thread to handle
connection

e Current request waits if all threads busy
Once a thread grabs onto connection, it

uses the same processing code as
before



Multi-thread web server (3)

Each connection is identified by a socket
returned by accept

Which is just an int
Simple management of connections among threads

Threads should sleep while waiting for a new
connection

Condition variables are perfect for this

Don’t forget to protect any global variables
Use part 2 mutexes, CVs

Develop + test with pthreads initially

Mostly modify sioux_run.c and/or your own files
Stick to the sthread.h interface!



Semaphores (1)

wait (semaphore *S) {
S—->value—--;
i1f (S->value < 0) {
add to S->1ist;
block ()

}
signal (semaphore *S) {
S—->value++;
1f (S->value <= 0) {
remove P from S->1ist;
wakeup (P) ;

)
Where are critical sections?



Semaphores (2)

walt (semaphore *S) {
while (TestAndSet (S->guard)) ;
S—>value—--—;
1f (S=->value < 0) {
add to S->list;
block ()
}
S—>guard = false
}
What’s wrong with this?



Semaphores (3)

walt (semaphore *S) {
while (TestAndSet (S->guard)) ;
S—>value—--—;
1f (S->value < 0) {
add to S->1list;
S—>guard = false
block ()

OK?



Semaphores (4)

walt (semaphore *S) {
while (TestAndSet (S->guard)) ;
S—>value—--;
1f (S->value < 0) {
add to S->1list;
S—>guard = false
block ()
}
S—>guard = false;
}
No, really, OK?



Semaphores (5)

walt (semaphore *S) {

while (TestAndSet (S->guard))

S—>value—--—;

1f (S->value < 0) {
add to S->1list;
S—>guard = false
block ()

} else {

S—>guard = false;

°
4

10



Alarm clock (1)

monltor alarm {
condition alarm;
wakeme (1nt num ticks)

alarm.wait () ;
}
tick () |

alarm.signal () ;

{

11



Alarm clock (2)

monltor alarm {
condition alarm;
wakeme (1nt num ticks)

alarm.wait () ;
}
tick () |

alarm.broadcast () ;

{

12



Alarm clock (3)

monitor alarm {
sorted list list;
int time = 0;

wake me (1nt num ticks)
Cc = new condition;
list->1nsert
time + num ticks,
c—->walit () ;

C) s

13



Alarm clock(4)

monitor alarm {

tick () {
time++;
for (head()->time == time)

c—>signal () ;

14



