
1

CSE 451: Operating Systems
Autumn 2004

Some Principles of Security

2

Security

(Based on Steve Gribble’s & Mike Swift’s past security slides)

• Computer Security
– techniques for computing in the presence of adversaries

• three categories of security goals:
– confidentiality: preventing the unauthorized release of information

– integrity: preventing the unauthorized modification of information

– availability: preventing denial of service attacks

• protection is all about providing all three on a single machine
– usually considered to be the responsibility of operating systems

– Could be in runtime (e.g. verification in JVM)

• Cryptography
– techniques for communicating in the presence of adversaries

3

Trusted Computing Base (TCB)

• Think carefully about what you are trusting with your
information
– if you type your password on a keyboard, you’re trusting:

• the keyboard manufacturer
• your computer manufacturer
• your operating system
• the password library
• the application that’s checking the password

– TCB = set of components (hardware, software, wetware) that
you trust your secrets with

• Public web kiosks should not be in your TCB
– should your OS? (e.g., IE and active-X extensions)
– how about your compiler?

• A great read: “Reflections on Trusting Trust” by Ken Thompson

4

Design Principles for
Security-Conscious Systems

• Security is much more than just crypto
– if there is a fundamental flaw in the design of a system, then

all the crypto in the world won’t help you

– unfortunately, systems design is still as much an art as it is a
science…

• but, decades of building systems the wrong way have helped
us cull some learned wisdom

• we’ll cover just a few of these

• Why is security hard?
– Security slows things down

– Security gets in the way

– Security adds no value if there are no attacks
– Only the government used to pay for security

• The Internet made us all potential victims

5

Principle of Least Privilege

• Figure out exactly which capabilities a program
needs to run, and grant it only those
– not always easy, but: start out granting none, run program,

and see where it breaks. add new privileges as needed.

• Unix: concept of root is not a good example of this
– some programs need to run as root just to get a small

privilege, such as running with a port < 1024
• e.g., ftpd

6

Tractorbeaming wu-ftpd

• wu-ftp tries to run with least privilege
– but occasionally tries to elevate its privilege with:

set eui d(0) ;

/ / some pr i vi l eged “ cr i t i cal sec t i on” r uns her e

set eui d(get ui d()) ;

– however, wu-ftp does not disable UNIX signals
• thus, while it is in critical section, it can be tractor-beamed away

to a signal handler

• remote user can cause signal handler to run by terminating a
download in midstream!

– but need to catch wu-ftp in the critical section

• wu-ftp doesn’t relinquish privileges after signal handler
– result: abort a download, use wu-ftp as root

– get full access to entire remote file system

2

7

Principle of Complete Mediation

• Check every access to every object
– in rare cases, can get away with less (caching)

• but only if sure nothing relevant in environment has
changed…and there is a lot that’s relevant!

• e.g., NFS and file handles
– NFS is not a good example of complete mediation
– NFS protocol:

• client contacts remote “mountd” to get a filehandle to a
remotely exported NFS filesystem

– this is done when remote system is mounted
– remote mountd checks access control at mount time

• filehandle is a capability: client presents it to read/write file
– access control is not checked after mount time!

• use network sniffer to get filehandle
– access exported filesystem without access control check

8

Fail-Safe defaults

• Start by denying all access, then allow only that
which has been explicitly permitted
– oversights will then show up as “false negatives”

• somebody is denied access that should be given it

– opposite leads to “false positives”
• somebody is given access that shouldn’t get it
• bad guys usually don’t report this kind of failure…

• Examples:
– Irix shipped with “xhost +” by default

• Allows the world to open windows on your screen and grab the
keystrokes you type

9

“Security through Obscurity” = bad

• Security through obscurity
– attempting to gain security by hiding the implementation details of a

system
– claim: a secure system should be secure even if all implementation

details are published
• in fact, a system grows more secure as people scour over

implementation details and find flaws
• rely on mathematics and sound design to keep secure

• Counterexample: GSM cell phones
– GSM committee designed their own crypto algorithm, but hid it from

the world - “impossible to clone”
• social engineering + reverse engineering revealed the algorithm
• it turned out to be very weak

– could essentially play questions with identity chip on cell phone, and
eventually learn its secret key in a few hours

10

Authentication

• Identifying users and programs
• How does a computer know who I am?

– User name / password
• How does it store the password?
• How does it check the password?
• How secure is a password?

– Public/Private Keys
– Biometrics

• What does the computer do with this information?
– Assign you an identifier

• Unix: 32 bit number stored in process structure
• Windows NT: 27 byte number, stored in an access token in

kernel

11

Aside on Encryption

• Encryption: takes a key and data and creates ciphertext: Ek1(M) = C
• Decryption: takes ciphertext and a key and recovers data: Dk2(C) = M
• Symmetric algorithms (aka secret-key algorithms):

– k1 = k2 (or can get k2 from k1)

• Public-Key Algorithms
– decryption key (k2) cannot be calculated from encryption key (k1)
– encryption key can be made public!

• encryption key = “public key”, decryption key = “private key”

• Hashing: takes data and creates a fixed-size fingerprint, or hash
– H(Attack at Dawn) = 183870
– H(attack at dawn) = 465348
– Can’t determine data from hash or find two pieces of data with same hash

encryption decryption
plaintext (M) ciphertext (C) original

plaintext

encryption key (k1) decryption key (k2)

12

• CTSS (1962): password file

• Unix (1974): encrypted passwords
– Weakness:

dictionary attack

• Unix (1979): salted passwords

Storing passwords

Bob: 14: “12.14.52”
David: 15: “god”
Mary: 16: “ !ofotc2n”

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

Bob: 14: S6Uu0cYDVdTAk: 45
David: 15: J2ZI4ndBL6X.M: 392
Mary: 16: VW2bqvTalBJKg: 152

3

13

Most common passwords

0, 000000, 00000000, 007, 1, 110, 111, 111111,
11111111, 12, 121212, 123, 123123, 1234, 12345,
123456, 1234567, 12345678, 123456789, 1234qwer,
123abc, 123asd, 123qwe, 2002, 2003, 2600, 54321,
654321, 88888888, a, aaa, abc, abc123, abcd,
Admin, admin, admin123, administrator, alpha, asdf,
computer, database, enable, foobar, god,
godblessyou, home, ihavenopass, Internet, Login,
login, love, mypass, mypass123, mypc, mypc123,
null, oracle, owner, pass, passwd, Password,
password, pat, patrick, pc, pw, pw123, pwd, qwer,
root, secret, server, sex, super, sybase, temp,
temp123, test, test123, win, xp, xxx, yxcv, zxcv

14

Password Security
• 26 letters used, 7 letters long

– 8 billion passwords (33 bits)
– Checking 100,000/second breaks in 22 hours

• System should make checking passwords slow

• Adding symbols and numbers and longer passwords
– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• SDSC computed 207 billion hashes for 50 million
passwords in 80 minutes.

15

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• Random number generators aren’t always that good.
• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk

16

Cool password attack

• VMS password checking flaw
– password checking algorithm:

f or (I =0; I <passwor d. l engt h() ; I ++) {
i f passwor d[I] == suppl i ed_passwor d[I]

r et ur n f al se;

}

r et ur n t r ue;

– can you see the problem?
• hint: think about virtual memory…

• another hint: think about page faults…

• final hint: who controls where in memory supplied_password
lives?

17

Attacks: Trojan Horses

• A malicious program disguised as an innocent one
• Login spoofers are a specialized class of Trojan

horses
– Can be circumvented by requiring an operation that

unprivileged programs cannot perform

– E.g. Start login sequence with a key combination user
programs cannot catch, CTRL+ALT+DEL on Windows

18

Attacks: Viruses and Worms

• Viruses: passive code attached to other programs
– E.g. a program that modifies MS Word

• Worms: code that actively replicates itself and does
not depend on the execution of another program to
spread
– E.g. the Internet worm

• Buffer overflow
– C string libraries hard to use correctly

• e.g. easy to write outside string bounds

– Most OS code is written in C, many systems have
vulnerabilities

– If a string is stored on the stack, someone can modify the
behavior of a program by going off the end of the string and
changing a return address stored on stack

4

19

Attacks: Denial of service

• Attacker sends legitimate-looking requests for service
to a service provider

• Service provider commits the necessary resources to
provide the service
– Ports, buffer space, bandwidth

• The resources are wasted, legitimate users get
diminished service
– Usually launched from many computers controlled by

attackers

• Possible whenever the cost to ask for service is far
cheaper than the cost of providing it
– Challenge-response mechanism

