A Crawler-based Study of Spyware in the Web

Alex Moshchuk, Tanya Bragin, Steve Gribble, Hank Levy
What is spyware?

- Broad class of malicious and unwanted software
- Steal control of a PC for the benefit of a 3rd party

Characteristics:
- Installs without user knowledge or consent
- Hijacks computer’s resources or functions
- Collects valuable information and relays to a 3rd party
- Resists detection and uninstallation
You know it when you see it
How do people get spyware?

- Spyware piggybacked on popular software
 - Kazaa, eDonkey

- Drive-by downloads
 - Web page installs spyware through browser
 - With or without user consent

- Trojan downloaders
 - Spyware downloads/installs more spyware
Why measure spyware?

- Understand the problem before defending against it
- Many unanswered questions
 - What’s the spyware density on the web?
 - Where do people get spyware?
 - How many spyware variants are out there?
 - What kinds of threats does spyware pose?
- New ideas and tools for:
 - Detection
 - Prevention
Approach

- Large-scale study of spyware:
 - Crawl “interesting” portions of the Web
 - Download content
 - Determine if it is malicious

- Two strategies:
 - Executable study
 - Find executables with known spyware
 - Drive-by download study
 - Find Web pages with drive-by downloads
Outline

- Introduction
- Executable file study
- Drive-by download study
- Summary
- Conclusions
Analyzing executables

- Web crawler collects a pool of executables
- Analyze each in a virtual machine:
 - Clone a clean WinXP VM
 - Automatically install executable
 - Run analysis to see what changed
 - Currently, an anti-spyware tool (Ad-Aware)
- Average analysis time – 90 sec. per executable
Executable study results

- Crawled 32 million pages in 9,000 domains
- Downloaded 26,000 executables
- Found spyware in 12.3% of them
 - Most installed just one spyware program
 - Only 6% installed three or more spyware variants
 - Few spyware variants encountered in practice
 - 142 unique spyware threats
Main targets

- Visit a site and download a program
- What’s the chance that you got spyware?
Popularity

- A small # of sites have large # of spyware executables:

- A small # of spyware variants are responsible for the majority of infections:
Quantify the kinds of threats posed by spyware
Consider five spyware functions
 What’s the chance an infected executable contains each function?

<table>
<thead>
<tr>
<th>Function</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keylogger</td>
<td>0.05%</td>
</tr>
<tr>
<td>Dialer</td>
<td>1.2%</td>
</tr>
<tr>
<td>Trojan downloader</td>
<td>12%</td>
</tr>
<tr>
<td>Browser hijacker</td>
<td>62%</td>
</tr>
<tr>
<td>Adware</td>
<td>88%</td>
</tr>
</tbody>
</table>
Example of a Nasty Executable

- **http://aaa1screensavers.com/**
 - “Let all your worries melt away into this collection of clouds in the sky – 100% free!”
 - **http://aaa1screensavers.com/free/clouds.exe**

- Installs 11 spyware programs initially
 - Includes a trojan downloader; continually installs more spyware
 - 10 more within first 20 minutes

- 12 new items on desktop, 3 browser toolbars

- Shows an ad for every 1.5 pages you visit

- CPU usage is constantly 100%

- No uninstallers

- Ad-Aware can’t clean

- System stops responding in 30 mins
 - Restarting doesn’t help

- Unusable system and no screensaver!
Outline

- Introduction
- Executable file study
- Drive-by download study
- Summary
- Conclusions
Finding drive-by downloads

- Evaluate the safety of browsing the Web

- Approach: automatic virtual browsing
 - Render pages in a real browser inside a clean VM
 - Internet Explorer
 - Mozilla Firefox
 - Identify malicious pages
 - Define triggers for suspicious browsing activity
 - Run anti-spyware check only when trigger fires
Event triggers

- Real-time monitoring for non-normal behavior:
 - Process creation
 - File events
 - Example: foo.exe written outside IE folders.
 - Registry events
 - Example: new auto-start entry for foo.exe

- No false negatives (theoretically)
- 41% false positives:
 - Legitimate software installations
 - Background noise
 - Spyware missed by our anti-spyware tool
More on automatic browsing

- Caveats and tricks
 - Restore clean state before navigating to next page
 - Speed up virtual time
 - Monitor for crashes and freezes

- Deciding what to say to security prompts:
 - “yes”
 - Emulate user consent
 - “no” (or no prompt)
 - Find security exploits
Example of a security exploit

- **http://www.1000dictionaries.com/free_games_1.html**

 - Ads
 - `<iframe 1>`
 - Check browser and referrer
 - `<iframe 2>`
 - `<object 1>`
 - `<object 2>`

- Help ActiveX Control
 - C:\windows\helpctr\tools.htm

- Inject code

- Local help objects bypass security restrictions; unsecured “local zone”
- Cross-zone scripting vulnerability in ActiveX Help allows JavaScript to inject code into a local help control

- JavaScript; VBscript
 - http://www.tribeca.hu/ie/writehta.txt
 - GET http://www.tribeca.hu/ie/mhh.exe
 - save as c:\calc.exe
 - run
Examined 50,000 pages
5.5% carried drive-by downloads
1.4% exploited browser vulnerabilities
Types of spyware

- Is drive-by download spyware more dangerous?

<table>
<thead>
<tr>
<th>Type</th>
<th>Executables</th>
<th>Drive-by Downloads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keylogger</td>
<td>0.05%</td>
<td>0%</td>
</tr>
<tr>
<td>Dialer</td>
<td>1.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Trojan Downloader</td>
<td>12%</td>
<td>50%</td>
</tr>
<tr>
<td>Browser hijacker</td>
<td>62%</td>
<td>84%</td>
</tr>
<tr>
<td>Adware</td>
<td>88%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Is Firefox better than IE?

- Repeat drive-by download study with Mozilla Firefox
- Found 189 (0.4%) pages with drive-by downloads
 - All require user consent
 - All are based on Java
 - Work in other browsers
- Firefox is not 100% safe
 - However, much safer than IE

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>adult</td>
<td>0</td>
</tr>
<tr>
<td>celebrity</td>
<td>33</td>
</tr>
<tr>
<td>games</td>
<td>0</td>
</tr>
<tr>
<td>kids</td>
<td>0</td>
</tr>
<tr>
<td>music</td>
<td>1</td>
</tr>
<tr>
<td>news</td>
<td>0</td>
</tr>
<tr>
<td>pirate</td>
<td>132</td>
</tr>
<tr>
<td>random</td>
<td>0</td>
</tr>
<tr>
<td>wallpaper</td>
<td>0</td>
</tr>
<tr>
<td>blacklist</td>
<td>23</td>
</tr>
<tr>
<td>Total</td>
<td>189</td>
</tr>
</tbody>
</table>
Summary

- Lots of spyware on the Web
 - 1 in 8 programs is infected with spyware
 - 1 in 18 Web pages has a spyware drive-by download
 - 1 in 70 Web pages exploits browser vulnerabilities

- Most of it is just annoying (adware)
 - But a significant fraction poses a big risk

- Spyware companies target specific popular content
 - Most piggy-backed spyware in games & celebrity sites
 - Most drive-by downloads in pirate sites

- Few spyware variants are encountered in practice
Conclusion and Future Work

- Addressed key questions about spyware
- Built useful tools and infrastructure

More details:
A Crawler-based Study of Spyware in the Web
NDSS06

Looking forward:
- Real-time protection with a trigger-based Web proxy
- Automatically detect new spyware
 - Use triggers as truth
- Increase the scale of the study
- Study change of spyware over time (see paper!)
Questions?