Secondary storage

• Secondary storage typically:
 – is anything that is outside of “primary memory”
 – does not permit direct execution of instructions or data retrieval via machine load/store instructions

• Characteristics:
 – it’s large: 30-250GB
 – it’s cheap: $1/GB
 – it’s persistent: data survives power loss
 – it’s slow: milliseconds to access
 • why is this slow??
Another trip down memory lane …

IBM 2314
About the size of 6 refrigerators
8 x 29MB (M!)
Disk trends

• Disk capacity, 1975-1989
 – doubled every 3+ years
 – 25% improvement each year
 – factor of 10 every decade
 – exponential, but far less rapid than processor performance

• Disk capacity since 1990
 – doubling every 12 months
 – 100% improvement each year
 – factor of 1000 every decade
 – 10x as fast as processor performance!
Memory hierarchy

- Each level acts as a cache of lower levels
Memory hierarchy: distance analogy

- **CPU registers**
 - 1 minute
 - "My head"

- **L1 cache**
 - 10 minutes
 - "This room"

- **L2 cache**
 - 1.5 hours
 - "This building"

- **Primary Memory**
 - 2 years
 - Olympia

- **Secondary Storage**
 - 2,000 years
 - Pluto

- **Tertiary Storage**
 - Andromeda
Disks and the OS

• Disks are messy, messy devices
 – errors, bad blocks, missed seeks, etc.

• Job of OS is to hide this mess from higher-level software
 – low-level device drivers (initiate a disk read, etc.)
 – higher-level abstractions (files, databases, etc.)

• OS may provide different levels of disk access to different clients
 – physical disk block (surface, cylinder, sector)
 – disk logical block (disk block #)
 – file logical (filename, block or record or byte #)
Physical disk structure

• Disk components
 – platters
 – surfaces
 – tracks
 – sectors
 – cylinders
 – arm
 – heads
Disk performance

• Performance depends on a number of steps
 – seek: moving the disk arm to the correct cylinder
 • depends on how fast disk arm can move
 – seek times aren’t diminishing very quickly (why?)
 – rotation (latency): waiting for the sector to rotate under head
 • depends on rotation rate of disk
 – rates are increasing, but slowly (why?)
 – transfer: transferring data from surface into disk controller, and from there sending it back to host
 • depends on density of bytes on disk
 – increasing, and very quickly
• When the OS uses the disk, it tries to minimize the cost of all of these steps
 – particularly seeks and rotation
Disk scheduling

- Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 - reasonable when load is low
 - long waiting time for long request queues
 - SSTF (shortest seek time first)
 - minimize arm movement (seek time), maximize request rate
 - unfairly favors middle blocks
 - SCAN (elevator algorithm)
 - service requests in one direction until done, then reverse
 - skews wait times non-uniformly (why?)
 - C-SCAN
 - like scan, but only go in one direction (typewriter)
 - uniform wait times
Interacting with disks

• In the old days…
 – OS would have to specify cylinder #, sector #, surface #, transfer size
 • i.e., OS needs to know all of the disk parameters
• Modern disks are even more complicated
 – not all sectors are the same size, sectors are remapped, …
 – disk provides a higher-level interface, e.g., SCSI
 • exports data as a logical array of blocks \([0 \ldots N]\)
 • maps \textbf{logical blocks} to cylinder/surface/sector
 • OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 • on-board cache
 • as a result, physical parameters are hidden from OS
 – both good and bad
Example disk characteristics

• IBM Ultrastar 36XP drive
 – form factor: 3.5”
 – capacity: 36.4 GB
 – rotation rate: 7,200 RPM (120 RPS)
 – platters: 10
 – surfaces: 20
 – sector size: 512-732 bytes
 – cylinders: 11,494
 – cache: 4MB
 – transfer rate: 17.9 MB/s (inner) – 28.9 MB/s (outer)
 – full seek: 14.5 ms
 – head switch: 0.3 ms