
CSE 451: Operating Systems
Autumn 2005

Lecture 7
Synchronization

Hank Levy
Levy@cs.washington.edu

Allen Center 596

10/27/2005 © 2005 Hank Levy 2

Synchronization

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server
– also, to coordinate their execution

• e.g., a disk reader thread hands off a block to a network writer

• For correctness, we have to control this cooperation
– must assume threads interleave executions arbitrarily and at

different rates
• scheduling is not under application writers’ control

– we control cooperation using synchronization
• enables us to restrict the interleaving of executions

• Note: this also applies to processes, not just threads
– and it also applies across machines in a distributed system

10/27/2005 © 2005 Hank Levy 3

Shared Resources

• We’ll focus on coordinating access to shared
resources
– basic problem:

• two concurrent threads are accessing a shared variable
• if the variable is read/modified/written by both threads, then

access to the variable must be controlled
• otherwise, unexpected results may occur

• Over the next two lectures, we’ll look at:
– mechanisms to control access to shared resources

• low level mechanisms like locks
• higher level mechanisms like mutexes, semaphores, monitors,

and condition variables
– patterns for coordinating access to shared resources

• bounded buffer, producer-consumer, …

10/27/2005 © 2005 Hank Levy 4

The classic example

• Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw(account, amount) {

balance = get_balance(account);
balance -= amount;
put_balance(account, balance);

return balance;
}

• Now suppose that you and your S.O. share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines, and

simultaneously withdraw $10.00 from the account?

10/27/2005 © 2005 Hank Levy 5

Example continued

• Represent the situation by creating a separate thread
for each person to do the withdrawals
– have both threads run on the same bank mainframe:

• What’s the problem with this?
– what are the possible balance values after this runs?

int withdraw(account, amount) {

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

int withdraw(account, amount) {

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

return balance;

}

10/27/2005 © 2005 Hank Levy 6

Interleaved Schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you? ;)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

put_balance(account, balance);

Execution sequence
as seen by CPU

context switch

context switch

10/27/2005 © 2005 Hank Levy 7

The crux of the matter

• The problem is that two concurrent threads (or
processes) access a shared resource (account)
without any synchronization
– creates a race condition

• output is non-deterministic, depends on timing

• We need mechanisms for controlling access to
shared resources in the face of concurrency
– so we can reason about the operation of programs

• essentially, re-introducing determinism

• Synchronization is necessary for any shared data
structure
– buffers, queues, lists, hash tables, …

10/27/2005 © 2005 Hank Levy 8

When are Resources Shared?

• Local variables are not shared
– refer to data on the stack, each thread has its own stack
– never pass/share/store a pointer to a local variable on

another thread’s stack

• Global variables are shared
– stored in the static data segment, accessible by any thread

• Dynamic objects are shared
– stored in the heap, shared if you can name it

• in C, can conjure up the pointer
– e.g. void *x = (void *) 0xDEADBEEF

• in Java, strong typing prevents this
– must pass references explicitly

10/27/2005 © 2005 Hank Levy 9

Mutual Exclusion

• We want to use mutual exclusion to synchronize
access to shared resources

• Code that uses mutual exclusion to synchronize its
execution is called a critical section
– only one thread at a time can execute in the critical section
– all other threads are forced to wait on entry
– when a thread leaves a critical section, another can enter

10/27/2005 © 2005 Hank Levy 10

Critical Section Requirements

• Critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section
– progress

• if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will

eventually enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

10/27/2005 © 2005 Hank Levy 11

Mechanisms for Building Crit. Sections

• Locks
– very primitive, minimal semantics; used to build others

• Semaphores
– basic, easy to get the hang of, hard to program with

• Monitors
– high level, requires language support, implicit operations
– easy to program with; Java “synchronized()” as example

• Messages
– simple model of communication and synchronization based

on (atomic) transfer of data across a channel
– direct application to distributed systems

10/27/2005 © 2005 Hank Levy 12

Locks

• A lock is a object (in memory) that provides the
following two operations:
– acquire(): a thread calls this before entering a critical section
– release(): a thread calls this after leaving a critical section

• Threads pair up calls to acquire() and release()
– between acquire() and release(), the thread holds the lock
– acquire() does not return until the caller holds the lock

• at most one thread can hold a lock at a time (usually)
– so: what can happen if the calls aren’t paired?

• Two basic flavors of locks
– spinlock
– blocking (a.k.a. “mutex”)

10/27/2005 © 2005 Hank Levy 13

Using Locks

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section?

– is this ok?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

return balance;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

10/27/2005 © 2005 Hank Levy 14

Spinlocks

• How do we implement locks? Here’s one attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins for lock to be
released, hence spinlock

10/27/2005 © 2005 Hank Levy 15

Implementing locks (continued)

• Problem is that implementation of locks has critical
sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted
• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …
– disable/reenable interrupts

• to prevent context switches

10/27/2005 © 2005 Hank Levy 16

Spinlocks redux: Test-and-Set

• CPU provides the following as one atomic instruction:

• So, to fix our broken spinlocks, do:

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

struct lock {

int held = 0;

}

void acquire(lock) {

while(test_and_set(&lock->held));

}

void release(lock) {

lock->held = 0;

}

10/27/2005 © 2005 Hank Levy 17

Problems with spinlocks

• Horribly wasteful!
– if a thread is spinning on a lock, the thread holding the lock

cannot make process

• How did lock holder yield the CPU in the first place?
– calls yield() or sleep()
– involuntary context switch

• Only want spinlocks as primitives to build higher-level
synchronization constructs

10/27/2005 © 2005 Hank Levy 18

Disabling Interrupts

• An alternative:

• Can two threads disable interrupts simultaneously?
• What’s wrong with interrupts?

– only available to kernel (why? how can user-level use?)
– insufficient on a multiprocessor

• back to atomic instructions

• Like spinlocks, only use to implement higher-level
synchronization primitives

struct lock {

}

void acquire(lock) {

cli(); // disable interrupts

}

void release(lock) {

sti(); // reenable interupts

}

