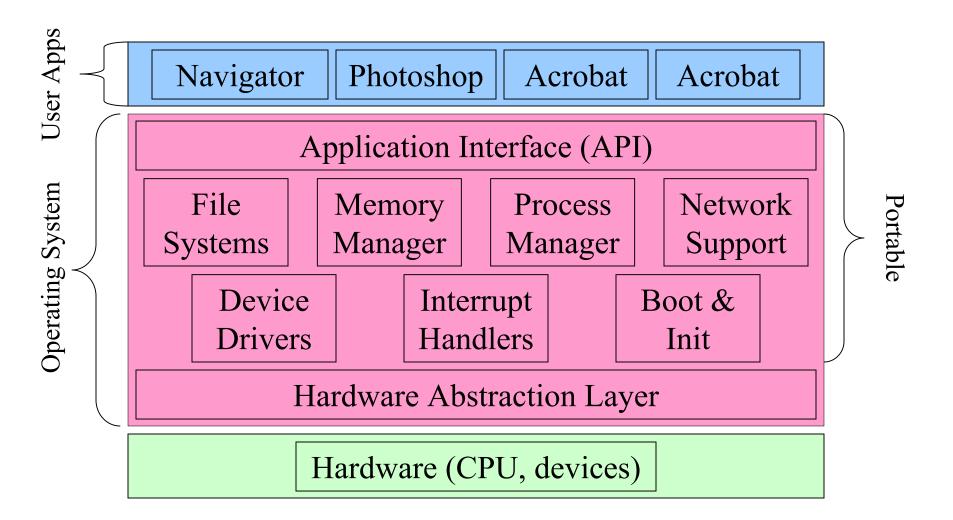
CSE 451: Operating Systems Autumn 2005

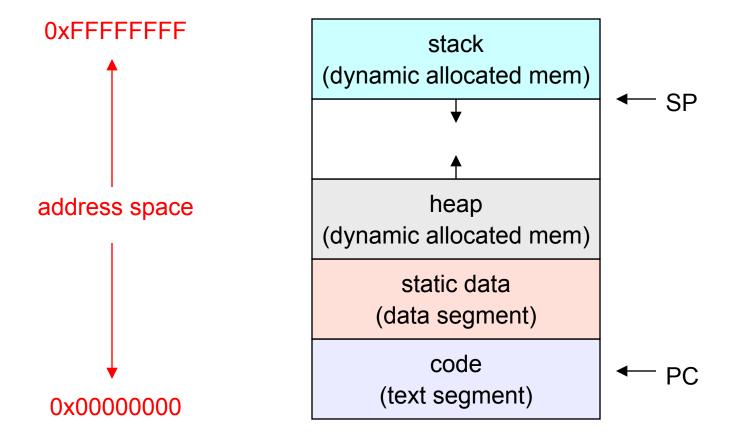

Lecture 4 Processes

Hank Levy
levy@cs.washington.edu
Allen Center 596

Process Management

- This lecture begins a series of topics on processes, threads, and synchronization
 - this is perhaps the most important part of the class
 - there definitely will be several questions on these topics on the midterm
- Today: processes and process management
 - what are the OS units of execution?
 - how are they represented inside the OS?
 - how is the CPU scheduled across processes?
 - what are the possible execution states of a process?
 - and how does the system move between them?

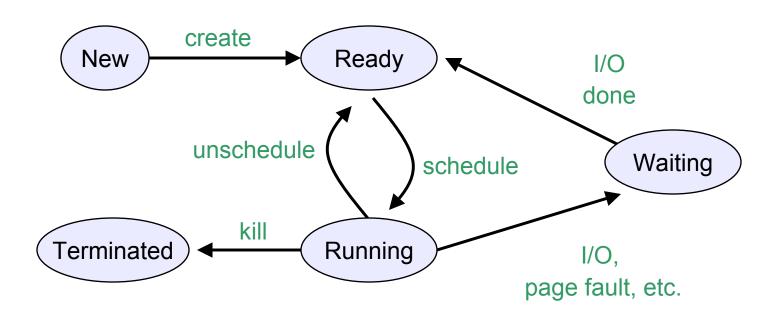
Example OS in operation


The Process

- The process is the OS's abstraction for execution
 - the unit of execution
 - the unit of scheduling
 - the dynamic (active) execution context
 - compared with program: static, just a bunch of bytes
- Process is often called a job, task, or sequential process
 - a sequential process is a program in execution
 - defines the instruction-at-a-time execution of a program

What's in a Process?

- A process consists of (at least):
 - an address space
 - the code for the running program
 - the data for the running program
 - an execution stack and stack pointer (SP)
 - traces state of procedure calls made
 - the program counter (PC), indicating the next instruction
 - a set of general-purpose processor registers and their values
 - a set of OS resources
 - open files, network connections, sound channels, ...
- The process is a container for all of this state
 - a process is named by a process ID (PID)
 - just an integer


A process's address space

Process states

- Each process has an execution state, which indicates what it is currently doing
 - ready: waiting to be assigned to CPU
 - could run, but another process has the CPU
 - running: executing on the CPU
 - is the process that currently controls the CPU
 - pop quiz: how many processes can be running simultaneously?
 - waiting: waiting for an event, e.g. I/O
 - cannot make progress until event happens
- As a process executes, it moves from state to state
 - UNIX: run ps, STAT column shows current state
 - which state is a process is most of the time?

Process state transitions

What can cause schedule/unschedule transitions?

Process data structures

- How does the OS represent a process in the kernel?
 - at any time, there are many processes, each in its own particular state
 - the OS data structure that represents each is called the process control block (PCB)
- PCB contains all info about the process
 - OS keeps all of a process' hardware execution state in the PCB when the process isn't running
 - PC
 - SP
 - registers
 - when process is unscheduled, the state is transferred out of the hardware into the PCB

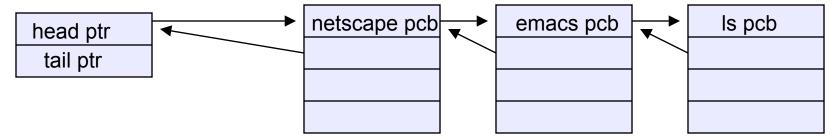
PCB

- The PCB is a data structure with many, many fields:
 - process ID (PID)
 - execution state
 - program counter, stack pointer, registers
 - memory management info
 - UNIX username of owner
 - scheduling priority
 - accounting info
 - pointers into state queues
- In linux:
 - defined in task struct (include/linux/sched.h)
 - over 95 fields!!!

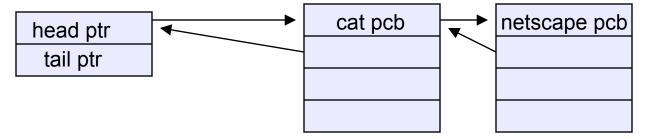
Simple Process Control Block

process state process number program counter stack pointer 32 general-purpose registers memory management info username of owner queue pointers for state queues scheduling info (priority, etc.) accounting info

PCBs and Hardware State


- When a process is running, its hardware state is inside the CPU
 - PC, SP, registers
 - CPU contains current values
- When the OS stops running a process (puts it in the waiting state), it saves the registers' values in the PCB
 - when the OS puts the process in the running state, it loads the hardware registers from the values in that process' PCB
- The act of switching the CPU from one process to another is called a context switch
 - timesharing systems may do 100s or 1000s of switches/s
 - takes about 5 microseconds on today's hardware

State queues


- The OS maintains a collection of queues that represent the state of all processes in the system
 - typically one queue for each state
 - e.g., ready, waiting, ...
 - each PCB is queued onto a state queue according to its current state
 - as a process changes state, its PCB is unlinked from from queue, and linked onto another

State queues

Ready queue header

Wait queue header

• There may be many wait queues, one for each type of wait (particular device, timer, message, ...)

PCBs and State Queues

- PCBs are data structures
 - dynamically allocated inside OS memory
- When a process is created:
 - OS allocates a PCB for it
 - OS initializes PCB
 - OS puts PCB on the correct queue
- As a process computes:
 - OS moves its PCB from queue to queue
- When a process is terminated:
 - OS deallocates its PCB

Process creation

- One process can create another process
 - creator is called the parent
 - created process is called the child
 - UNIX: do ps, look for PPID field
 - what creates the first process, and when?
- In some systems, parent defines or donates resources and privileges for its children
 - UNIX: child inherits parents userID field, etc.
- when child is created, parent may either wait for it to finish, or it may continue in parallel, or both!

UNIX process creation

- UNIX process creation through fork() system call
 - creates and initializes a new PCB
 - creates a new address space
 - initializes new address space with a copy of the entire contents of the address space of the parent
 - initializes kernel resources of new process with resources of parent (e.g. open files)

17

- places new PCB on the ready queue
- the fork() system call returns twice
 - once into the parent, and once into the child
 - returns the child's PID to the parent
 - returns 0 to the child

fork()

```
int main(int argc, char **argv)
  char *name = argv[0];
  int child pid = fork();
  if (child pid == 0) {
   printf("Child of %s is %d\n",
           name, child pid);
    return 0;
  } else {
    printf("My child is %d\n", child pid);
    return 0;
```

output

```
spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 486
```

Fork and exec

- So how do we start a new program, instead of just forking the old program?
 - the exec () system call!
 - int exec(char *prog, char ** arqv)
- exec()
 - stops the current process
 - loads program 'prog' into the address space
 - initializes hardware context, args for new program
 - places PCB onto ready queue
 - note: does not create a new process!
- what does it mean for exec to return?
 - what happens if you "exec csh" in your shell?
 - what happens if you "exec Is" in your shell?

UNIX shells

```
int main(int argc, char **argv)
 while (1) {
    char *cmd = get next command();
    int child pid = fork();
    if (child pid == 0) {
       manipulate STDIN/STDOUT/STDERR fd's
       exec(cmd);
       panic("exec failed!");
    } else {
       wait(child pid);
```

Windows CreateProcess function

- Open the program file to be executed
- Create the Windows executive process object
- Create the initial thread (stack, context, ...)
- Notify Win32 subsystem about new process
- Start execution of the initial thread
- Complete initialization (eg, load dlls)
- Continue execution in both processes