CSE 451: Operating Systems
Autumn 2005

Architectural Support for
Operating Systems

Steve Gribble (for Hank Levy)

Even coarse architectural trends
impact tremendously the design of systems

* Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

10/4/2005 © 2005 Steve Gribble 2

 Primary memory capacity
— same story, same reason (Moore’s Law)

« 1978: 512K of VAX-11/780 memory for $30,000
» today:

m ™ USA ==
Member Purchase Program

Desktops Motebooks Software & Peripherals Service & Support

About Dell

Memory

238 Dual Channel DDRE SDRAM at A00MHz [add F46]
48 Dual Channel DDR SDRAM at JO0MHz [add F2,124]
512MB Dual Channel DR S0DRAM at 400MH=z

1GB Dual Channel DOR SDRAM at 400MHz [add F142]

= O 000D

FREE UFGRADE! 1024ME DDR SDRAM at 400MHz

10/4/2005 © 2005 Steve Gribble

Purchase Help

g Help Me Choose

« Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
— factor of 10 every decade

— Still exponential, but far less rapid than processor
performance

* Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

10/4/2005 © 2005 Steve Gribble

* Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

« Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
— =>1 TB costs $1K, 1 PB costs $1M

« In 3 years, 1 GB will cost $.10
— =>1 TB for $100, 1 PB for $100K

10/4/2005 © 2005 Steve Gribble

* Optical bandwidth today

— Doubling every 9 months

— 150% improvement each year

— Factor of 10,000 every decade

— 10x as fast as disk capacity!

— 100x as fast as processor performance!!

« What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

— What else?

10/4/2005 © 2005 Steve Gribble 6

Archive The New Pork Times

HOME SEARCH [*5oto Advanced SearchidArchive | » ooto MEMBER CENTER " b LOG auT |
HELP I Past30Days x| © YWelcome, lazowska

Thiz page iz print-ready, and thiz article will remain available for 90 days. Ingtructions for Saving | About thiz Service | Purchase History

October 22,2003, Wednesday

BUSINES S/ TINANCIAL DESK

TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC's
By JOHIN MARKOFF (NYT) 649 words

SAN FEANCISCO, Oct. 21 -- A home-brew supercomputer, assembled from off-the-shelf personal computers in qust one month at a cost of
slhightly more than §5 mullion, 15 about to be ranked as one of the fastest machines i the world.

Word of the low-cost supercomputer, put together by faculty, technicians and students at Virginda Polytechnic Institute, 15 shaling up the esotenic
world of lugh performance computing, where the fastest machines have traditionally cost from $100 million to $250 milhon and taken several
vears to build.

The Virginia Tech supercomputer, put together from 1,100 Apple Macintosh computers, has been successfully tested in recent days, according
to Jack Dongarra, a Uiverstty of Tennessee cotnputer scientist who matntaing a listing of the world's 500 fastest machines.

The official results for the ranking will not be reported until next month at a supercomputer ndustry event. But the Apple-based supercomputer,

which 12 powered by 2,200 LE M. microprocessors, was able to compute at 741 trilion operations a second, a speed surpassed by only three
other ultra-fast computers.

10/4/2005 © 2005 Steve Gribble 7

Archive The New Pork Times
HOME SEARCH | ¥ 3o to Advanced SearchsArchive | + 5010 MEMBER CENTER " © Los out |
HELP I Past30Days ~| © YWelcome, lazowska

Thiz page iz print-ready, and thiz article will remain available for 90 days. Ingtructions for Saving | About thiz Service | Purchaszse History

May 26, 2003, Monday

BUSINES S/ FINANCIAL DESK

TECHNOLOGY; From PlayStation to Supercomputer for $50,000
By JOHN MARKOFF (NYT) 913 words

Az perhaps the clearest ewidence wet of the computing power of sophisticated but inexpensive wideo-game consoles, the Mational Center for
supercomputing Applications at the Tiversity of Ihineots at Trbana-Champaign has assembled a supercomputer from an army of Sony
PlayStation 2's.

The resulting system, with compoenents purchased at retail prices, cost a hittle more than $50,000. The center's researchers believe the system
may be capable of a half trilion operations a second, well within the definttion of supercomputer, although it may not rank among the world's
S00 fastest supercomputers.

Pethaps the most striking aspect of the project, which uses the open source Linux operating systetn, 15 that the only hardware engineering
mvolved was placing 70 of the mdindual game machines i a rack and plugging them together with a ligh-speed Hewlett-Packard networkc
switch. The center's scientists bought 100 machines, but are holding 30 in reserve, possibly for high-resclution display application.

"t took a lot of titne because vou have to cut all of these things out of the plastic packaging," said Craig Steffen, a sentor research scientist at the
center, who 15 one of four scientists worlding part titne on the project.

The scientists are taking advantage of a standard component of the Sony video-game console that was ongmally intended to move and transform
pizels rapadly on a telewision screen to produce lfelike graphics. The chip 15 not the PlayStation 2's MIPS microprocessor, but rather a graphics
co-processor known as the Emotion Engine. That custom designed siicon chip 13 capable of producing up to 6.5 bilion mathematical operations
a secofid.

|

IALIPOIDIJ\

10/4/2005

Blustooth + XScale + 1G8 Storags

© 2005 Steve Gribble

=10 x|
G

a Metwork Camera Lazowska,'Downs - Microsoft Internet Explorer

File Edit Wew Faworibes Tools Help

@Back) O = @ @ \’_;j | ‘zig"Favorites e‘media @| ;&.. :\ﬁ

Address IE http:ll',|'1?2.30.192.253Il"u'iewerFrame?DirectiDn=Preset&PresetOperation=M0ve&Data=2&MUde=M0ti0n&Resquti0n=ﬂ Go

Pan ! Tilt

e Scan

Image Quality
* Fa

Favor Mation

Image Size

Buffered Image

| K

I_ I_ I_ |4 Internet

10/4/2005 © 2005 Steve Gribble 10

Storage Latency:
How Far Away is the Data?

Andromeda
109 Tape /Optical] o0t Yesrs
Robot
10° Disk Pluto +H
100 Memory .

10 On Board Cache 10 min

2 On Chip Cache :
1 Regqisters %My Head 1 min

© 2004 Jim Gray, Microsoft Corporation

Lower-level architecture affects the OS
even more dramatically

« QOperating system functionality is dictated, at least in
part, by the underlying hardware architecture
— includes instruction set (synchronization, I/0O, ...)
— also hardware components like MMU or DMA controllers

 Architectural support can vastly simplify (or
complicate!) OS tasks
— e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

— Most Intel-based PCs still lack support for 64-bit addressing

» even though available for a decade on other platforms: MIPS,
Alpha, IBM, etc...

« this will change mostly due to AMD’s new 64-bit architecture

10/4/2005 © 2005 Steve Gribble 12

Architectural features affecting OS’s

* These features were built primarily to support OS’s:

timer (clock) operation

synchronization instructions (e.g., atomic test-and-set)
memory protection

|/O control operations

interrupts and exceptions

protected modes of execution (kernel vs. user)
protected instructions

system calls (and software interrupts)

10/4/2005 © 2005 Steve Gribble

13

Protected instructions

« some instructions are restricted to the OS
— known as protected or privileged instructions

* e.g., only the OS can:

— directly access /O devices (disks, network cards)
« why?

— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?

— manipulate special ‘mode bits’
* interrupt priority level
* why?

— halt instruction
« why?

10/4/2005 © 2005 Steve Gribble 14

OS protection

So how does the processor know if a protected
instruction should be executed?

— the architecture must support at least two modes of
operation: kernel mode and user mode

* VAX, x86 support 4 protection modes
* why more than 27

— mode is set by status bit in a protected processor register
* user programs execute in user mode
* OS executes in kernel mode (OS == kernel)
Protected instructions can only be executed in the
kernel mode

— what happens if user mode executes a protected instruction?

10/4/2005 © 2005 Steve Gribble 15

Crossing protection boundaries

* So how do user programs do something privileged?

e.g., how can you write to a disk if you can’t do I/O
instructions?

« User programs must call an OS procedure

OS defines a sequence of system calls
how does the user-mode to kernel-mode transition happen?

* There must be a system call instruction, which:

causes an exception (throws a software interrupt), which
vectors to a kernel handler

passes a parameter indicating which system call to invoke
saves caller’s state (regs, mode bit) so they can be restored
OS must verify caller’'s parameters (e.g., pointers)

must be a way to return to user mode once done

10/4/2005 © 2005 Steve Gribble 16

A kernel crossing illustrated

Netscape: read()

trap to kernel
mode; save app

user mode state
kernel mode
Y restore app
trap handler state, return to
user mode,
find read() resume
handler in
vector table

read() kernel routine

10/4/2005 © 2005 Steve Gribble 17

System call issues

« What would happen if kernel didn’t save state?
* Why must the kernel verify arguments?

 How can you reference kernel objects as arguments
or results to/from system calls?

10/4/2005 © 2005 Steve Gribble 18

Memory protection

* OS must protect user programs from each other
— maliciousness, ineptitude

* OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers
— are these protected?

10/4/2005

Prog A

Prog B

Prog C

basereg

—
/

Hnﬂtreg

© 2005 Steve Gribble

base and limit registers

are loaded by OS before

starting program

19

More sophisticated memory protection

« coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

10/4/2005 © 2005 Steve Gribble

20

OS control flow

« after the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called

« kernel defines handlers for each event type

— specific types are defined by the architecture
« e.g.: timer event, I/O interrupt, system call trap
— when the processor receives an event of a given type, it
* transfers control to handler within the OS
» handler saves program state (PC, regs, etc.)
* handler functionality is invoked
» handler restores program state, returns to program

10/4/2005 © 2005 Steve Gribble

21

Interrupts and exceptions

« Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
* e.g., a page fault, write to a read-only page
» an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
* e.g., device finishes 1/O
* e.g., timer fires

10/4/2005 © 2005 Steve Gribble

22

/O control

e |ssues:

— how does the kernel start an [/O?
» special I/O instructions
* memory-mapped I/O

— how does the kernel notice an I/O has finished?
« polling
* interrupts
* Interrupts are basis for asynchronous |/O
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done

— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types

» who populates the vector table, and when?

— CPU switches to address indicated by vector specified by
interrupt signal

10/4/2005 © 2005 Steve Gribble 23

Timers

« How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt
« “quantum”; how big should it be set?

— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
 very interesting policy question: we’ll dedicate a class to it
* Should the timer be privileged?

— for reading or for writing?

10/4/2005 © 2005 Steve Gribble 24

Synchronization

* Interrupts cause a wrinkle:

— may occur any time, causing code to execute that interferes
with code that was interrupted

— OS must be able to synchronize concurrent processes
* Synchronization:

— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

 architecture must support disabling interrupts
— another method: have special complex atomic instructions
* read-modify-write
» test-and-set
 load-linked store-conditional

10/4/2005 © 2005 Steve Gribble 25

“Concurrent programming”

« Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

 Arises from the architecture

« Can be sugar-coated, but cannot be totally
abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

10/4/2005 © 2005 Steve Gribble 26

