
1

Operating System Security

Mike Swift
CSE 451

Autumn 2003

Outline

• Overarching goal: safe sharing
• Authentication
• Authorization
• Reference Monitors
• Confinement

Safe Sharing

• Protecting a single computer with one user is easy
– Prevent everybody else from having access
– Encrypt all data with a key only one person knows

• Sharing resources safely is hard
– Preventing some people from reading private data

(e.g. grades)
– Prevent some people from using too many

resources (e.g. disk space)
– Prevent some people from interfering with other

programs (e.g. inserting key strokes / modifying
displays)

Why is security hard?

• Security slows things down
• Security gets in the way
• Security adds no value if there are no attacks
• Only the government used to pay for security

– The Internet made us all potential victims

2

Trusted Computing Base (TCB)
• Think carefully about what you are trusting with your information

– if you type your password on a keyboard, you’re trusting:
• the keyboard manufacturer
• your computer manufacturer
• your operating system
• the password library
• the application that’s checking the password

– TCB = set of components (hardware, software, wetware) that
you trust your secrets with

• Public web kiosks should *not* be in your TCB
– should your OS?

• but what if it is promiscuous? (e.g., IE and active-X extensions)
– how about your compiler?

• A great read: “Reflections on Trusting Trust”.

Security Techniques

• Authentication – identifying users and programs
• Authorization – determining what access users and

programs have to things
– Complete mediation: check every access to every

protected object
• Auditing – record what users and programs are doing

for later analysis

Authentication

• How does a computer know who I am?
– User name / password

• How do it store the password?
• How do it check the password?
• How secure is a password?

– Public/Private Keys
– Biometrics

• What does the computer do with this information?
– Assign you an identifier

• Unix: 32 bit number stored in process structure
• Windows NT: 27 byte number, stored in an access token

in kernel

• CTSS (1962): password file

• Unix (1974): encrypt passwords with passwords

• Unix (1979): salted passwords

Storing passwords

Bob: 14: “12.14.52”
David: 15: “allison”
Mary: 16: “!ofotc2n”

Bob: 14: S6Uu0cYDVdTAk
David: 15: J2ZI4ndBL6X.M
Mary: 16: VW2bqvTalBJKg

Bob: 14: S6Uu0cYDVdTAk: 45
David: 15: J2ZI4ndBL6X.M: 392
Mary: 16: VW2bqvTalBJKg: 152

K=[0]allison392

K=[0]allison

3

More Storing Passwords
• Unix-style password file

– Password file not protected, because information
in it can’t be used to logon

– Doesn’t work for network authentication
• Doesn’t contain any secret information

• Windows-NT style password file
– Contains MD4 hash of passwords
– Hash must be protected because it can be used to

log on
• Hidden from users
• Encrypted by random key
• Physical security required

Password Security
• 26 letters used, 7 letters long

– 8 billion passwords (33 bits)
– Checking 100,000/second breaks in 22 hours

• System should make checking passwords slow

• Adding symbols and numbers and longer passwords
– 95 characters, 14 characters long
– 1027 passwords = 91 bits
– Checking 100,000/second breaks in 1014 years

• SDSC computed 207 billion hashes for 50 million
passwords in 80 minutes.
– Hashing all passwords for one salt takes 20 minutes on

a P4

Do longer passwords work?

• People can’t remember 14-character strings of
random characters

• Random number generators aren’t always that good.
• People write down difficult passwords
• People give out passwords to strangers
• Passwords can show up on disk

Authorization

• How does the system know what I’m allowed to do?
– Authorization matrix:

• Objects = things that can be accessed
• Subjects = things that can do the accessing (users or

programs)
– What are the limits?

• Time of day
• Ranges of values

ReadNoneNone/usr

Read
Write

Read
Write

Read
Write

/homes

Read
Write

ReadRead/etc
CarlBobAlice

4

Access Control Lists

• Representation used in Windows NT, Unix for files
• Stored on each file / directory

ReadEveryone
ReadStudents

Read, Write,
Delete

Bob

Unix:
Fixed set of permissions (read,write,delete)
Three sets of subjects (owner, group, world)

Windows NT
Arbitrary number of entries
16 permissions per object

Capabilities

• Once granted, can be used to get access to an object
• Implemented as a protected pointer

Kernel
Boundary

1 2 3 4 5 6

1
2
3

User
program

Capability
List

Used in Unix, Windows NT for files,
sockets, kernel objects
Capability obtained after ACL check

Which one is better

• ACLs:
– Can have large numbers of objects
– Easy to grant access to many objects at once
– Require expensive operation on every access

• Capabilities
– Hard to manage huge number of capabilities
– They have to come from somewhere
– They are fast to use (just pointer dereferences)

• Most systems use both
– ACLs for opening an object (e.g. fopen())
– Capabilities for performing operations (e.g. read())

Protection Domain Concept

• A protection domain is the set of objects and permissions on
those objects that executing code may access
– e.g. a process

• memory
• files
• sockets

– also: a device driver, a user, a single procedure
• Capabilities:

– protection domain defined by what is in the capability list
• ACLs

– protection domain defined by the complete set of objects
code could access

5

How does this get implemented?

• Originally:
– every application had its own security checking code,
– Separate set of users
– Separate set of objects
– Separate kinds of ACLs, capabilities

• This makes the trusted computing base) huge!!!
– You have to trust all applications do to this correctly!

• Now: Reference monitor
– Manages identity
– Performs all access checks
– Small, well-tested piece of code

Modern security problems
• Confinement

– How do I run code that I don’t trust?
• E.g. RealPlayer, Flash

– How do I restrict the data it can communicate?
– What if trusted code has bugs?

• E.g. Internet Explorer
• Concepts:

– Least Privilege: programs should only run with the minimal
amount of privilege necessary

• Solutions:
– Restricted contexts - let the user divide their identity
– ActiveX – make code writer identify self
– Java – use a virtual machine that intercepts all calls
– Binary rewriting - modify the program to force it to be safe

Restricted Contexts

• Add extra identity information to an a process
– e.g. both username and program name

(mikesw:navigator)
• Use both identities for access checks

– Add extra security checks at system calls that use
program name

– Add extra ACLs on objects that grant/deny access
to the program

• Allows user to sub-class themselves for less-trusted
programs

ActiveX

• All code comes with a public-key signature
• Code indicates what privileges it needs
• Web browser verifies certificate
• Once verified, code is completely trusted

Code

Signature / Certificate

Permissions

Written by HackerNet
Signed by VerifySign

Let JavaScript call this

6

Java
• All problems are solved by a layer of indirection

– All code runs on a virtual machine
– Virtual machine tracks security permissions
– Allows fancier access control models - allows stack walking

• JVM doesn’t work for other languages
• Virtual machines can be used with all languages

– Run virtual machine for hardware
– Inspect stack to determine subject for access checks

edu.washington.cse451

Java.jdbc.Statement

Com.sun.jdbc-odbc.stmt

Com.msft.sql-srv.query

Binary Rewriting

• Goal: enforce code safety by embedding checks in
the code

• Solution:
– Compute a mask of accessible addresses
– Replace system calls with calls to special code

Original Code:

lw $a0, 14($s4)
jal ($s5)
move $a0, $v0
jal $printf

Rewritten Code:

and $t6,$s4,0x001fff0
lw $a0, 14($t6)
and $t6,$s5, 0x001fff0
jal ($t6)
move $a0, $v0
jal $sfi_printf

