
Intro to Distributed Systems

Hank Levy

211/21/03

Distributed Systems

• Nearly all systems today are distributed in some way, e.g.:
– they use email

– they access files over a network

– they access printers over a network

– they are backed up over a network

– they share other physical or logical resources

– they cooperate with other people on other machines

– soon: they receive video, audio, etc.

311/21/03

Why use distributed systems?

• Distributed systems are now a requirement:
– economics dictate that we buy small computers

– everyone needs to communicate

– we need to share physical devices (printers) as well as
information (files, etc.)

– many applications are by their nature distributed (bank teller
machines, airline reservations, ticket purchasing)

– in the future, to solve the largest problems, we will need to get
large collections of small machines to cooperate together
(parallel programming)

411/21/03

What is a distributed system?

• There are several levels of distribution.

• Earliest systems used simple explicit network programs:
– FTP: file transfer program

– Telnet (rlogin): remote login program

– mail

– remote job entry (or rsh): run jobs remotely

• Each system was a completely autonomous independent
system, connected to others on the network

511/21/03

Loosely-Coupled Systems

• Most distributed systems are “loosely-coupled:

• Each CPU runs an independent autonomous OS.

• Hosts communicate through message passing.

• Computer don’t really trust each other.

• Some resources are shared, but most are not.

• The system may look differently from different
hosts.

• Typically, communication times are long.

611/21/03

Closely-Coupled Systems

• A distributed system becomes more “closely coupled”
as it:
– appears more uniform in nature

– runs a “single” operating system

– has a single security domain

– shares all logical resources (e.g., files)

– shares all physical resources (CPUs, memory, disks, printers, etc.)

• In the limit, a distributed system looks to the user as if it
were a centralized timesharing system, except that it’s
constructed out of a distributed collection of hardware
and software components.

711/21/03

Tightly-Coupled Systems

• A “tightly-coupled” system usually refers to a
multiprocessor.
– Runs a single copy of the OS with a single job queue

– has a single address space

– usually has a single bus or backplane to which all processors and
memories are connected

– has very low communication latency

– processors communicate through shared memory

811/21/03

Some Issues in Distributed Systems

• Transparency (how visible is the distribution)

• Security

• Reliability

• Performance

• Scalability

• Programming models

• Communications models

911/21/03

Transparency

• In a true distributed system with transparency:
– it would appear as a single system

– different modes would be invisible

– jobs would migrate automatically from node to node

– a job on one node would be able to use memory on another

1011/21/03

Distribution and the OS

• There are various issues that the OS must deal
with:
– how to provide efficient network communication

– what protocols to use

– what is the application interface to remote apps (although this might
be a language issue)

– protection of distributed resources

1111/21/03

The Network

• There are various network technologies that can be used to
interconnect nodes.

• In general, Local Area Networks (LANs) are used to connect
hosts within a building. Wide Area Networks (WANs) are
used across the country or planet.

• We are at an interesting point, as network technology is
about to see an order-of-magnitude performance increase.
This will have a huge impact on the kinds of systems we can
build.

1211/21/03

Issues in Networking

• Routing

• Bandwidth and contention

• Latency

• Reliability

• Efficiency

• Cost

• Scalability

1311/21/03

Network Topologies

Point to Point Ring Broadcast

Star Tree
Switch

1411/21/03

Two ways to handle networking

• Circuit Switching
– what you get when you make a phone call

– good when you require constant bit rate

– good for reserving bandwidth (refuse connection if bandwidth not
available)

• Packet Switching
– what you get when you send a bunch of letters

– network bandwidth consumed only when sending

– packets are routed independently

– packetizing may reduce delays (using parallelism)

1511/21/03

Packet switching is preferable for data
communications

• From the perspective of the network
– but may not be preferable for some application

• Applications are bursty
– variable amounts of info at irregular intervals

– a diskless workstation: needs all bandwidth to transfer a page,
so can’t reserve it

– circuit switching may have high cost to set up connection

– maintaining the connection may waste bandwidth if connection
is used infrequently

1611/21/03

New Applications

• Video and Voice may be different (more like phone
system)

• But with data compression, makes circuit
switching less attractive:
– compressed video generates a variable bit rate signal

– signal needs to be transported within a certain max. delay,
but bandwidth needed is variable

• New applications will be very bursty and will
require guarantees about latency.

1711/21/03

Messages

• At a low level, network communication is via messages.

• A message is simply a typed byte string passed between
two levels of the system (e.g., OS to OS, app to app).

• A message usually contains a header, indicating what kind
of information it contains, and some data.

• What the message “means,” i.e., how to interpret the bytes
in the message, is an agreement between the two
communicating parties (the protocol).

1811/21/03

The anatomy of a message

Where are messages kept before
they are sent? and after they
are received?

destination host addr.

source host addr.

application ID

msg length

msg data

checksum

header

The msg data may itself contain a
header and some data for another level
of communication, and so on.

1911/21/03

The OSI Model

• The Open Systems Interconnect model is a standard way of
understanding the conceptual layers of network communication.

• This is a model, nobody builds systems like this.

• Each level provided certain functions and guarantees, and
communicates with the same level on remote notes.

• A message is generated at the highest level, and is passed down
the levels, encapsulated by lower levels, until it is sent over the
wire.

• On the destination, it makes its way up the layers,until the high-
level msg reaches its high-level destination.

2011/21/03

OSI Levels

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

ApplicationNode A Node B

Network

2111/21/03

OSI Levels

• Physical Layer: electrical details of bits on the wire

• Data Link: sending “frames” of bits and error detection

• Network Layer:” routing packets to the destination

• Transport Layer: reliable transmission of messages,
disassembly/assembly, ordering, retransmission of lost packets

• Session Layer; really part of transport, typ. Not impl.

• Presentation Layer: data representation in the message

• Application: high-level protocols (mail, ftp, etc.)

2211/21/03

Addressing and Packet Format
• Every network card has a

unique address in
HARDWARE.

• The ``Data'' segment
contains higher level
protocol information.
– Which protocol is this

packet destined for?

– Which process is the
packet destined for?

– Which packet is this in a
sequence of packets?

– What kind of packet is
this?

• This is the stuff of the OSI
reference model.

Start (7 bytes)

Destination (6)

Source (6)

Length (2)

Msg Data (1500)

Checksum (4)

2311/21/03

Ethernet packet dispatching

• An incoming packet comes into the ethernet controller.

• The ethernet controller reads it off the network into a buffer.

• It interrupts the CPU.

• A network interrupt handler reads the packet out of the controller
into memory.

• A dispatch routine looks at the Data part and hands it to a higher
level protocol

• The higher level protocol copies it out into user space.

• A program manipulates the data.

• The output path is similar.

• Consider what happens when you send mail.

2411/21/03

Example: Mail
Hi Dad. Hi Dad.

Hi Dad.

To: Dad

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

SrcEther: 0xdeadbeef
DestEther: 0xfeedface

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

Mail Composition And Display

Mail Transport Layer

Network Transport Layer

Link Layer

Hi Dad.

To: Dad

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

SrcEther: 0xdeadbeef
DestEther: 0xfeedface

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

Network

User

Kernel

2511/21/03

Routing

• Moving packets from one network to
another.

• Routers run their own address
distribution protocol to ensure
connectivity
– decisions based on a distance metric

Router
gateway

routing table

2611/21/03

Finally

• TCP/IP (Transmission Control Protocol/Internet Protocol)
provides reliable, ordered bytestreams between pairs of
processes

• UDP/IP (User Datagram Protocol) provides unreliable,
unordered messages between pairs of processes

• A network interface delivers packets to the operating system.

• The operating system delivers messages to an application
according to the destination specified in the packet

• The rest is all about distributed programming!

