
1

1

Log-Structured File Systems

Hank Levy

2

Basic Problem
• Most file systems now have large memory caches

(buffers) to hold recently-accessed blocks

• Most reads are thus satisfied from the buffer cache
• From the point of view of the disk, most traffic is write

traffic
• So to speed up disk I/O, we need to make writes go

faster
• But disk performance is limited ultimately by disk head

movement
• With current file systems, adding a block takes several

writes (to the file and to the metadata), requiring
several disk seeks

3

LFS: Basic Idea

• An alternative is to use the disk as a log

• A log is a data structure that is written only at the head
• If the disk were managed as a log, there would be

effectively no head seeks

• The “file” is always added to sequentially
• New data and metadata (inodes, directories) are

accumulated in the buffer cache, then written all at
once in large blocks (e.g., segments of .5M or 1M)

• This would greatly increase disk thruput
• How does this really work? How do we read? What

does the disk structure look like? etc.? 4

LFS Data Structures

• inodes: as in Unix, inodes contain physical block
pointers for files

• inode map: a table indicating where each inode is on
the disk
– inode map blocks are written as part of the segment; a table in a

fixed checkpoint region on disk points to those blocks

• segment summary: info on every block in a segment

• segment usage table: info on the amount of “live” data
in a block

5

LFS vs. UFS
file1 file2

dir1 dir2

Unix File
System

file1 file2

dir1 dir2

Log-Structured
File System

Log

inode

directory

data

inode map

Blocks written to
create two 1-block
files: dir1/file1 and
dir2/file2, in UFS and
LFS

6

LFS: read and write

• Every write causes new blocks to be added to the
current segment buffer in memory; when that segment
is full, it is written to the disk

• Reads are no different than in Unix File System, once
we find the inode for a file (in LFS, using the inode
map, which is cached in memory)

• Over time, segments in the log become fragmented as
we replace old blocks of files with new block

• Problem: in steady state, we need to have contiguous
free space in which to write

2

7

Cleaning
• The major problem for a LFS is cleaning, i.e.,

producing contiguous free space on disk
• A cleaner process “cleans” old segments, i.e., takes

several non-full segments and compacts them, creating
one full segment, plus free space

• The cleaner chooses segments on disk based on:
– utilization: how much is to be gained by cleaning them

– age: how likely is the segment to change soon anyway

• Cleaner cleans “cold” segments at 75% utilization and
“hot” segments at 15% utilization (because it’s worth
waiting on “hot” segments for blocks to be rewritten by
current activity)

8

LFS Summary

• Basic idea is to handle reads through caching and
writes by appending large segments to a log

• Greatly increases disk performance on writes, file
creates, deletes, ….

• Reads that are not handled by buffer cache are same
performance as normal file system

• Requires cleaning demon to produce clean space, which
takes additional cpu time

