
1

CSE 451: Operating Systems
Winter 2004

Module 7
Semaphores and Monitors

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

1/24/2004 © 2004 Ed Lazowska & Hank Levy 2

Semaphores

• Semaphore = a synchronization primitive
– higher level than locks
– invented by Dijkstra in 1968, as part of the THE operating

system

• A semaphore is:
– a variable that is manipulated atomically through two

operations, P(sem) (wait) and V(sem) (signal)
• P and V are Dutch for “wait” and “signal”
• Plus, you get to say stuff like “the thread p’s on the semaphore”

– P(sem): block until sem > 0, then subtract 1 from sem and
proceed

– V(sem): add 1 to sem

1/24/2004 © 2004 Ed Lazowska & Hank Levy 3

Two types of semaphores

• Binary semaphore (aka mutex semaphore)
– guarantees mutually exclusive access to resource (e.g., a

critical section of code)
– only one thread allowed entry at a time
– sem is initialized to 1

• Counting semaphore
– represents a resources with many units available
– allows threads to enter as long as more units are available
– sem is initialized to N

• N = number of units available

• We’ll mostly focus on binary semaphores

1/24/2004 © 2004 Ed Lazowska & Hank Levy 4

Usage

• From the programmer’s perspective, P and V on a
binary semaphore are just like Acquire and Release
on a lock

P(sem)
...
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code
...

V(sem)
– same lack of programming language support for correct

usage

• Important differences in the underlying
implementation, however

1/24/2004 © 2004 Ed Lazowska & Hank Levy 5

Blocking in semaphores

• Each semaphore has an associated queue of threads
– when P(sem) is called by a thread,

• if sem was “available” (>0), decrement sem and let thread
continue

• if sem was “unavailable” (<=0), place thread on associated
queue; run some other thread

– When V(sem) is called by a thread
• if thread(s) are waiting on the associated queue, unblock one

(place it on the ready queue)
• if no threads are waiting on the associated queue, increment

sem
– the signal is “remembered” for next time P(sem) is called

• might as well let the “V-ing” thread continue execution

1/24/2004 © 2004 Ed Lazowska & Hank Levy 6

Implementation

– P(sem)
• acquire “real” mutual exclusion
• if sem was “available” (>0), decrement sem
• release “real” mutual exclusion; let thread continue
• if sem was “unavailable” (<=0), place thread on associated

queue and release “real” mutual exclusion; run some other
thread

– When V(sem) is called by a thread
• acquire “real” mutual exclusion
• if thread(s) are waiting on the associated queue, unblock one

(place it on the ready queue)
• if no threads are on the queue, sem is incremented

– the signal is “remembered” for next time P(sem) is called
• release “real” mutual exclusion
• might as well let the “V-ing” thread continue execution

2

1/24/2004 © 2004 Ed Lazowska & Hank Levy 7

Pressing questions

• How do you acquire “real” mutual exclusion?
• Why is this any better than using a spinlock (test-and-

set) or disabling interrupts (assuming you’re in the
kernel) in lieu of a semaphore?

• What if some bozo issues an extra V?
• What if some bozo forgets to P?

1/24/2004 © 2004 Ed Lazowska & Hank Levy 8

Example: Bounded buffer problem

• AKA producer/consumer problem
– there is a buffer in memory

• with finite size N entries
– a producer thread inserts entries into it
– a consumer thread removes entries from it

• Threads are concurrent
– so, we must use synchronization constructs to control

access to shared variables describing buffer state

1/24/2004 © 2004 Ed Lazowska & Hank Levy 9

Bounded buffer using semaphores
(both binary and counting)

var mutex: semaphore = 1 ;mutual exclusion to shared data
empty: semaphore = n ;count of empty buffers (all empty to start)
full: semaphore = 0 ;count of full buffers (none full to start)

producer:
P(empty) ; one fewer buffer, block if none available
P(mutex) ; get access to pointers

<add item to buffer>
V(mutex) ; done with pointers
V(full) ; note one more full buffer

consumer:
P(full) ;wait until there’s a full buffer
P(mutex) ;get access to pointers

<remove item from buffer>
V(mutex) ; done with pointers
V(empty) ; note there’s an empty buffer

<use the item>

Note 1: I have spared you a
repeat of the clip-art!

Note 2: I have elided all the
code concerning which is
the first full buffer, which is
the last full buffer, etc.

Note 3: Try to figure out
how to do this without using
counting semaphores!

1/24/2004 © 2004 Ed Lazowska & Hank Levy 10

Example: Readers/Writers

• Basic problem:
– object is shared among several processes
– some read from it
– others write to it

• We can allow multiple readers at a time
– why?

• We can only allow one writer at a time
– why?

1/24/2004 © 2004 Ed Lazowska & Hank Levy 11

Readers/Writers using semaphores
var mutex: semaphore ; controls access to readcount

clear: semaphore ; control entry for a writer or first reader
readcount: integer ; number of active readers

writer:
P(clear) ; any writers or readers?

<perform write operation>
V(clear) ; allow others

reader:
P(mutex) ; ensure exclusion

readcount = readcount + 1 ; one more reader
if readcount = 1 then P(clear) ; if we’re the first, synch with writers

V(mutex)
<perform reading>

P(mutex) ; ensure exclusion
readcount = readcount – 1 ; one fewer reader
if readcount = 0 then V(clear) ; no more readers, allow a writer

V(mutex)

1/24/2004 © 2004 Ed Lazowska & Hank Levy 12

Readers/Writers notes

• Note:
– the first reader blocks if there is a writer

• any other readers will then block on mutex
– if a waiting writer exists, last reader to exit signals waiting

writer
• can new readers get in while writer is waiting?

– when writer exits, if there is both a reader and writer waiting,
which one goes next is up to scheduler

3

1/24/2004 © 2004 Ed Lazowska & Hank Levy 13

Semaphores vs. locks

• Threads that are blocked at the level of program logic
are placed on queues, rather than busy-waiting

• Busy-waiting is used for the “real” mutual exclusion
required to implement P and V, but these are very
short critical sections – totally independent of
program logic

• In the not-very-interesting case of a thread package
implemented in an address space “powered by” only
a single kernel thread, it’s even easier that this

1/24/2004 © 2004 Ed Lazowska & Hank Levy 14

Problems with semaphores

• They can be used to solve any of the traditional
synchronization problems, but:
– semaphores are essentially shared global variables

• can be accessed from anywhere (bad software engineering)
– there is no connection between the semaphore and the data

being controlled by it
– used for both critical sections (mutual exclusion) and for

coordination (scheduling)
– no control over their use, no guarantee of proper usage

• Thus, they are prone to bugs
– a better approach: use programming language support

1/24/2004 © 2004 Ed Lazowska & Hank Levy 15

Monitors

• A programming language construct that supports
controlled access to shared data
– synchronization code added by compiler, enforced at

runtime
– why does this help?

• Monitor is a software module that encapsulates:
– shared data structures
– procedures that operate on the shared data
– synchronization between concurrent threads that invoke

those procedures

• Monitor protects the data from unstructured access
– guarantees data can only be accessed through procedures,

hence in legitimate ways

1/24/2004 © 2004 Ed Lazowska & Hank Levy 16

A monitor

shared data

waiting queue of threads
trying to enter the monitor

operations (procedures)at most one thread
in monitor at a

time

1/24/2004 © 2004 Ed Lazowska & Hank Levy 17

Monitor facilities

• Mutual exclusion
– only one thread can be executing inside at any time

• thus, synchronization implicitly associated with monitor
– if a second thread tries to execute a monitor procedure, it

blocks until the first has left the monitor

• Once inside, a thread may discover it can’t continue,
and may wish to sleep
– or, allow some other waiting process to continue
– condition variables provided within monitor

• threads can wait, or can signal others to continue
• condition variables can only be accessed from within monitor
• a thread that waits “steps outside” the monitor
• what happens to a thread that signals depends on the precise

monitor semantics that are used

1/24/2004 © 2004 Ed Lazowska & Hank Levy 18

Condition variables

• A place to wait; sometimes called a rendezvous point
• Three operations on condition variables

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have associated wait queues

– signal(c)
• wake up at most one waiting thread
• if no waiting threads, signal is lost

– this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting threads

4

1/24/2004 © 2004 Ed Lazowska & Hank Levy 19

Bounded buffer using monitors
Monitor bounded_buffer {

buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
while(array “resources” is full)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

while (array “resources” is empty)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}

1/24/2004 © 2004 Ed Lazowska & Hank Levy 20

Two kinds of monitors

• Hoare monitors: signal(c) means
– run waiter immediately
– signaller blocks immediately

• condition guaranteed to hold when waiter runs
– can use “if” rather than “while” in previous example

• but, signaller must restore monitor invariants before signalling!

• Mesa monitors: signal(c) means
– waiter is made ready, but the signaller continues

• waiter runs when signaller leaves monitor (or waits)
• condition is not necessarily true when waiter runs again

– must use “while” as in previous example
– signaller need not restore invariant until it leaves the monitor
– being woken up is only a hint that something has changed

• must recheck conditional case

1/24/2004 © 2004 Ed Lazowska & Hank Levy 21

Hoare vs. Mesa

• Hoare monitors
– if (notReady)

• wait(c)

• Mesa monitors
– while(notReady)

• wait(c)

• Mesa monitors easier to use
– more efficient
– fewer switches
– directly supports broadcast

• Hoare monitors leave less to chance
– when wake up, condition guaranteed to be what you expect

1/24/2004 © 2004 Ed Lazowska & Hank Levy 22

A monitor is a language feature

• Language supports monitors
• Compiler understands them

– compiler inserts calls to runtime routines for
• monitor entry
• monitor exit
• signal
• wait

• Runtime system implements these routines
– moves threads on and off queues
– ensures mutual exclusion!

