
1

CSE 451: Operating Systems
Winter 2004

Module 15
BSD UNIX Fast File System

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

2/24/2004 © 2004 Ed Lazowska & Hank Levy 2

Advanced file system implementations

• We’ve looked at disks
• We’ve looked at file systems generically
• We’ve looked in detail at the implementation of the 

original Bell Labs UNIX file system
– a great simple yet practical design
– exemplifies engineering tradeoffs that are pervasive in 

system design
• Now we’ll look at two more advanced file systems

– Berkeley Software Distribution (BSD) UNIX Fast File 
System (FFS)

• enhanced performance for the UNIX file system
• at the heart of most UNIX file systems today

– Berkeley Log-Structured File System (LFS)
• a research file system – a worth experiment

2/24/2004 © 2004 Ed Lazowska & Hank Levy 3

BSD UNIX FFS

• Original (1970) UNIX file system was elegant but 
slow
– poor disk throughput

• far too many seeks, on average

• Berkeley UNIX project did a redesign in the mid ’80’s
– McKusick, Joy, Fabry, and Leffler
– improved disk throughput, decreased average request 

response time
– principal idea is that FFS is aware of disk structure

• i.e., place related things on nearby cylinders to reduce seeks

2/24/2004 © 2004 Ed Lazowska & Hank Levy 4

Recall the UNIX disk layout

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains head of 

freelists of inodes and file blocks

• i-node area
– contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

• File contents area
– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of memory

2/24/2004 © 2004 Ed Lazowska & Hank Levy 5

Recall the UNIX block list / file content structure

• directory entries point to i-nodes – file headers
• each i-node contains a bunch of stuff including 15 

block pointers
– first 12 point to file blocks (i.e., 4KB blocks of file data)
– then single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

… …

2/24/2004 © 2004 Ed Lazowska & Hank Levy 6

UNIX FS data and i-node placement

• Original UNIX FS had two major performance 
problems:
– data blocks are allocated randomly in aging file systems

• blocks for the same file allocated sequentially when FS is new
• as FS “ages” and fills, need to allocate blocks freed up when 

other files are deleted
– deleted files are essentially randomly placed
– so, blocks for new files become scattered across the disk!

– i-nodes are allocated far from blocks
• all i-nodes at beginning of disk, far from data
• traversing file name paths, manipulating files, directories 

requires going back and forth from i-nodes to data blocks

• BOTH of these generate many long seeks!



2

2/24/2004 © 2004 Ed Lazowska & Hank Levy 7

FFS: Cylinder groups

• FFS addressed these problems using the notion of a 
cylinder group
– disk is partitioned into groups of cylinders
– data blocks from a file are all placed in the same cylinder group
– files in same directory are placed in the same cylinder group
– i-node for file placed in same cylinder group as file’s data

• Introduces a free space requirement
– to be able to allocate according to cylinder group, the disk must 

have free space scattered across all cylinders
– in FFS, 10% of the disk is reserved just for this purpose!

• good insight: keep disk partially free at all times!
• this is why it may be possible for df to report >100% full!

2/24/2004 © 2004 Ed Lazowska & Hank Levy 8

FFS: Increased block size, fragments

• I lied: the original UNIX FS had 1KB blocks, not 4KB 
blocks
– even more seeking
– small maximum file size (¼ as much user data per block, ¼

as many pointers per indirect block), ~17GB maximum file 
size

• FFS fixed this by using a larger block (4KB)
– allows for very large files (4TB)
– but, introduces internal fragmentation

• on average, each file wastes 2K!
– why?

• worse, the average file size is only about 1K!
– why?

– fix: introduce “fragments”
• 1KB pieces of a block

2/24/2004 © 2004 Ed Lazowska & Hank Levy 9

FFS: Awareness of hardware characteristics

• Original UNIX FS was unaware of disk parameters
• FFS parameterizes the FS according to disk and 

CPU characteristics
– e.g., account for CPU interrupt and processing time, plus 

disk characteristics, in deciding where to lay out sequential 
blocks of a file, to reduce rotational latency

2/24/2004 © 2004 Ed Lazowska & Hank Levy 10

FFS: Faster, but less elegant
(or, “as ugly as the day is long”!)

• Multiple cylinder groups
– effectively, treat a single big disk as multiple small disks
– additional free space requirement (this is cheap, though)

• Bigger blocks
– but fragments, to avoid excessive fragmentation

• Aware of hardware characteristics
– ugh!


