
1

CSE 451: Operating Systems
Winter 2004

Module 14
File Systems

Ed Lazowska
lazowska@cs.washington.edu

Allen Center 570

2/17/2004 © 2004 Ed Lazowska & Hank Levy 2

File systems

• The concept of a file system is simple
– the implementation of the abstraction for secondary storage

• abstraction = files
– logical organization of files into directories

• the directory hierarchy
– sharing of data between processes, people and machines

• access control, consistency, …

2/17/2004 © 2004 Ed Lazowska & Hank Levy 3

Files

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link
– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …

• Type can be encoded in the file’s name or contents
– windows encodes type in name

• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …
– old Mac OS stored the name of the creating program along

with the file
– unix has a smattering of both

• in content via magic numbers or initial characters (e.g., #!)

2/17/2004 © 2004 Ed Lazowska & Hank Levy 4

Basic operations

NT
• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix
• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)

2/17/2004 © 2004 Ed Lazowska & Hank Levy 5

File access methods

• Some file systems provide different access methods
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order
– direct access

• random access given a block/byte #
– record access

• file is array of fixed- or variable-sized records
– indexed access

• FS contains an index to a particular field of each record in a file
• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from
direct access?
– what might the FS do differently in these cases?

2/17/2004 © 2004 Ed Lazowska & Hank Levy 6

Directories

• Directories provide:
– a way for users to organize their files
– a convenient file name space for both users and FS’s

• Most file systems support multi-level directories
– naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)

• Most file systems support the notion of current
directory
– absolute names: fully-qualified starting from root of FS

bash$ cd /usr/local

– relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /usr/local/bin)

2

2/17/2004 © 2004 Ed Lazowska & Hank Levy 7

Directory internals

• A directory is typically just a file that happens to
contain special metadata
– directory = list of (name of file, file attributes)
– attributes include such things as:

• size, protection, location on disk, creation time, access time, …
– the directory list is usually unordered (effectively random)

• when you type “ls”, the “ls” command sorts the results for you

2/17/2004 © 2004 Ed Lazowska & Hank Levy 8

Path name translation

• Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

• What goes on inside the file system?
– open directory “/” (well known, can always find)
– search the directory for “one”, get location of “one”
– open directory “one”, search for “two”, get location of “two”
– open directory “two”, search for “three”, get loc. of “three”
– open file “three”
– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is why open is separate from read/write (session state)
– OS will cache prefix lookups to enhance performance

• /a/b, /a/bb, /a/bbb all share the “/a” prefix

2/17/2004 © 2004 Ed Lazowska & Hank Levy 9

Protection systems

• FS must implement some kind of protection system
– to control who can access a file (user)
– to control how they can access it (e.g., read, write, or exec)

• More generally:
– generalize files to objects (the “what”)
– generalize users to principals (the “who”, user or program)
– generalize read/write to actions (the “how”, or operations)

• A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed
– e.g., you can read or write your files, but others cannot
– e.g., your can read /etc/motd but you cannot write to it

2/17/2004 © 2004 Ed Lazowska & Hank Levy 10

Model for representing protection

• Two different ways of thinking about it:
– access control lists (ACLs)

• for each object, keep list of principals and principals’ allowed
actions

– capabilities
• for each principal, keep list of objects and principal’s allowed

actions

• Both can be represented with the following matrix:

rguest

rrwrgribble

rwrwrwroot

/home/guest/home/gribble/etc/passwd

principals

objects

ACL

capability

2/17/2004 © 2004 Ed Lazowska & Hank Levy 11

ACLs vs. Capabilities

• Capabilities are easy to transfer
– they are like keys: can hand them off
– they make sharing easy

• ACLs are easier to manage
– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of principals that have it
• hard to do, given that principals can hand off capabilities

• ACLs grow large when object is heavily shared
– can simplify by using “groups”

• put users in groups, put groups in ACLs
• you are all in the “VMware powerusers” group on Win2K

– additional benefit
• change group membership, affects ALL objects that have this

group in its ACL

2/17/2004 © 2004 Ed Lazowska & Hank Levy 12

The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969
• “UNIX rose from the ashes of a multi-organizational

effort in the early 1960s to develop a dependable
timesharing operating system” -- Multics

• Designed for a “workgroup” sharing a single system
• Did its job exceedingly well

– Although it has been stretched in many directions and made
ugly in the process

• A wonderful study in engineering tradeoffs

3

2/17/2004 © 2004 Ed Lazowska & Hank Levy 13

All disks are divided into five parts …

• Boot block
– can boot the system by loading from this block

• Superblock
– specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

• i-node area
– contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

• File contents area
– fixed-size blocks; head of freelist is in the superblock

• Swap area
– holds processes that have been swapped out of memory

2/17/2004 © 2004 Ed Lazowska & Hank Levy 14

So …

• You can attach a disk to a dead system …
• Boot it up …
• Find, create, and modify files …

– because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

– by convention, the second i-node is the root directory of the
volume

2/17/2004 © 2004 Ed Lazowska & Hank Levy 15

i-node format

• User number
• Group number
• Protection bits
• Times (file last read, file last written, inode last written)
• File code: specifies if the i-node represents a directory,

an ordinary user file, or a “special file” (typically an I/O
device)

• Size: length of file in bytes
• Block list: locates contents of file (in the file contents

area)
– more on this soon!

• Link count: number of directories referencing this i-node

2/17/2004 © 2004 Ed Lazowska & Hank Levy 16

The flat (i-node) file system

• Each file is known by a number, which is the number
of the i-node
– seriously – 1, 2, 3, etc.!
– why is it called “flat”?

• Files are created empty, and grow when extended
through writes

2/17/2004 © 2004 Ed Lazowska & Hank Levy 17

The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries
• Each entry consists of an i-node number and a file

name

a_directory144
oh_my_god93
another_file4
my_file216
..18
.152

File namei-node number

• It’s as simple as that!
2/17/2004 © 2004 Ed Lazowska & Hank Levy 18

The “block list” portion of the i-node

• Clearly it points to blocks in the file contents area
• Must be able to represent very small and very large

files. How?
• Each inode contains 15 block pointers

– first 12 are direct blocks (i.e., 4KB blocks of file data)
– then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

… …

4

2/17/2004 © 2004 Ed Lazowska & Hank Levy 19

So …

• Only occupies 15 x 4B in the i-node
• Can get to 12 x 4KB = a 48KB file directly

– (12 direct pointers, blocks in the file contents area are 4KB)
• Can get to 1024 x 4KB = an additional 4MB with a

single indirect reference
– (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks
holding file data)

• Can get to 1024 x 1024 x 4KB = an additional 4GB
with a double indirect reference
– (the 14th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to 4KB blocks
in the file contents area that contian 1K 4B pointers to blocks
holding file data)

• Maximum file size is 4TB
2/17/2004 © 2004 Ed Lazowska & Hank Levy 20

File system consistency

• Both i-nodes and file blocks are cached in memory
• The “sync” command forces memory-resident disk

information to be written to disk
– system does a sync every few seconds

• A crash or power failure between sync’s can leave an
inconsistent disk

• You could reduce the frequency of problems by
reducing caching, but performance would suffer big-
time

2/17/2004 © 2004 Ed Lazowska & Hank Levy 21

i-check: consistency of the flat file system

• Is each block on exactly one list?
– create a bit vector with as many entries as there are blocks
– follow the free list and each i-node block list
– when a block is encountered, examine its bit

• If the bit was 0, set it to 1
• if the bit was already 1

– if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

– if the block is in two files, call support!

– if there are any 0’s left at the end, put those blocks on the
free list

2/17/2004 © 2004 Ed Lazowska & Hank Levy 22

d-check: consistency of the directory file system

• Do the directories form a tree?
• Does the link count of each file equal the number of

directories links to it?
– I will spare you the details

• uses a zero-initialized vector of counters, one per i-node
• walk the tree, then visit every i-node

2/17/2004 © 2004 Ed Lazowska & Hank Levy 23

Protection

• Objects: individual files
• Principals: owner/group/world
• Actions: read/write/execute

• This is pretty simple and rigid, but it has proven to be
about what we can handle!

2/17/2004 © 2004 Ed Lazowska & Hank Levy 24

File sharing

• Each user has a “channel table” (or “per-user open
file table”)

• Each entry in the channel table is a pointer to an
entry in the system-wide “open file table”

• Each entry in the open file table contains a file offset
(file pointer) and a pointer to an entry in the “memory-
resident i-node table”

• If a process opens an already-open file, a new open
file table entry is created (with a new file offset),
pointing to the same entry in the memory-resident i-
node table

• If a process forks, the child gets a copy of the
channel table (and thus the same file offset)

5

2/17/2004 © 2004 Ed Lazowska & Hank Levy 25

User 1 User 2 User 3

channel table channel table channel table

open file
table

file offset file offset

memory-resident
i-node table

