CSE 451: Operating Systems Winter 2004

Module 13 **Secondary Storage**

Ed Lazowska ska@cs.washington.edu Allen Center 570

Secondary storage

- · Secondary storage typically:
 - is anything that is outside of "primary memory"
 - does not permit direct execution of instructions or data retrieval via machine load/store instructions
- · Characteristics:
 - it's large: 30-250GB
 - it's cheap: \$1/GB
 - it's persistent: data survives power loss
 - it's slow: milliseconds to access
 - · why is this slow??

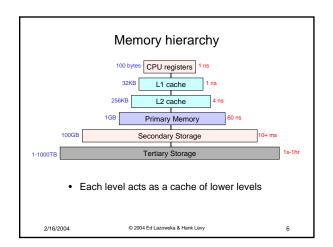
2/16/2004 © 2004 Ed Lazowska & Hank Levy

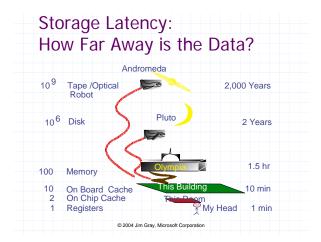
Disk trends

- Disk capacity, 1975-1989
 - doubled every 3+ years
 - 25% improvement each year
 - factor of 10 every decade
 - exponential, but far less rapid than processor performance
- Disk capacity since 1990
 - doubling every 12 months
 - 100% improvement each year
 - factor of 1000 every decade
 - 10x as fast as processor performance!

2/16/2004 © 2004 Ed Lazowska & Hank Levy

- Only a few years ago, we purchased disks by the megabyte (and it hurt!)
- Today, 1 GB (a billion bytes) costs \$1 from Dell (except you have to buy in increments of 20 GB) - => 1 TB costs \$1K, 1 PB costs \$1M
- In 3 years, 1 GB will cost \$.10
- => 1 TB for \$100, 1 PB for \$100K


Hard Drive


80GB Ultra ATA/100 Hard Drive (7200 RPM)

C 120GB Serial ATA Hard Drive (7200RPM) [add \$28]

C FREE UPGRADE! 120GB Serial ATA Hard Drive,7200RPM

2/16/2004 © 2004 Ed Lazowska & Hank Levy

Disks and the OS

- · Disks are messy, messy devices
 - errors, bad blocks, missed seeks, etc.
- Job of OS is to hide this mess from higher-level software
 - low-level device drivers (initiate a disk read, etc.)
 - higher-level abstractions (files, databases, etc.)
- · OS may provide different levels of disk access to different clients
 - physical disk block (surface, cylinder, sector)
 - disk logical block (disk block #)
 - file logical (filename, block or record or byte #)

2/16/2004

© 2004 Ed Lazowska & Hank Levy

Physical disk structure Disk components platters surfaces - tracks sectors - cylinders - arm heads 2/16/2004 © 2004 Ed Lazowska & Hank Levy q

Disk performance

- Performance depends on a number of steps
 - seek: moving the disk arm to the correct cylinder
 - depends on how fast disk arm can move
 - seek times aren't diminishing very quickly (why?)
 - rotation (latency): waiting for the sector to rotate under head
 - · depends on rotation rate of disk
 - rates are increasing, but slowly (why?)
 - transfer: transferring data from surface into disk controller, and from there sending it back to host
 - depends on density of bytes on disk
 - increasing, and very quickly
- When the OS uses the disk, it tries to minimize the cost of all of these steps
 - particularly seeks and rotation

2/16/2004 © 2004 Ed Lazowska & Hank Levy

10

Disk scheduling

- Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 - · reasonable when load is low
 - long waiting time for long request queues
 SSTF (shortest seek time first)

 - · minimize arm movement (seek time), maximize request rate
 - · unfairly favors middle blocks
 - SCAN (elevator algorithm)
 - · service requests in one direction until done, then reverse
 - · skews wait times non-uniformly (why?)
 - C-SCAN
 - · like scan, but only go in one direction (typewriter)
 - uniform wait times

2/16/2004

© 2004 Ed Lazowska & Hank Levy

11

Interacting with disks

- · In the old days...
 - OS would have to specify cylinder #, sector #, surface #,
 - . i.e., OS needs to know all of the disk parameters
- · Modern disks are even more complicated
 - not all sectors are the same size, sectors are remapped, ...
 - disk provides a higher-level interface, e.g., SCSI
 - exports data as a logical array of blocks [0 ... N]
 - maps logical blocks to cylinder/surface/sector
 - . OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 - · on-board cache
 - · as a result, physical parameters are hidden from OS
 - both good and bad

2/16/2004

© 2004 Ed Lazowska & Hank Levy

12

Example disk characteristics

- IBM Ultrastar 36XP drive
 - form factor: 3.5"
 - capacity: 36.4 GB (150x those 6 fridges!)
 - rotation rate: 7,200 RPM (120 RPS) platters: 10

 - surfaces: 20 sector size: 512-732 bytes (why?)
 - cylinders: 11,494cache: 4MB

 - transfer rate: 17.9 MB/s (inner) 28.9 MB/s (outer) (why?)
 - full seek: 14.5 ms
 - head switch: 0.3 ms

2/16/2004

© 2004 Ed Lazowska & Hank Levy

