CSE 451: Operating Systems
Autumn 2004

Module 2

Architectural Support for
Operating Systems

Hank Levy

Even coarse architectural trends
impact tremendously the design of systems

« Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

10/14/2004 © 2004 Ed Lazowska & Hank Levy

* Primary memory capacity
— same story, same reason (Moore’s Law)

« I remember pulling all kinds of strings to get a special deal:
512K of VAX-11/780 memory for $30,000

« today:
DAL e N
Deskiops Notebaoks: Software & Peripherals: Service & Support Purchase Holp
Memory, @Help e Chonse

268 Dusl Channsl DDR SDRAM 54 400MHz [a4d $426]

468 Dusl Channal DR SDRAM st 400MH: [3dd 52, 154]

168 Dusl Channal DR SORAM st 400MH: [add $192]

& FREE UPGRADE! 1024ME GDR SDRAM at 00MHZ

10/14/2004 © 2004 Ed Lazowska & Hank Levy 3

» Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
— factor of 10 every decade

— Still exponential, but far less rapid than processor
performance

» Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

10/14/2004 © 2004 Ed Lazowska & Hank Levy

« Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

* Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
— =>1TB costs $1K, 1 PB costs $1M

e In 3 years, 1 GB will cost $.10
— =>1TB for $100, 1 PB for $100K

10/14/2004 ©2004 Ed Lazowska & Hank Levy

» Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

* What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

— What else?

10/14/2004 © 2004 Ed Lazowska & Hank Levy

Archive The NewHork Times Archive The New Hork Times

o ey Hone I e Ty - o mewpen covren |+ o]
HELP Past 30 Days :I' © ‘Welcame, lazowska HELP Pest30Days j' ° ‘Welcome, lazowska
Saving | S |
October 22,2003, Wednesday May 26,2003, Monday
BUSINESS/FINANCIAL DESK BUSINESS/FINANCIAL DESK
TECHNOLOGY; Low-Cost Supercomputer Put Together From 1,100 PC's TECHNOLOGY; From PlayStation to Supercomputer for $50,000
By JOHN MARKOFF (NYT) 649 worls By JOHN MARKOFF (NYT)913 woris
SAN FRANCISCO, Oet 21 -- A home-brew supercomputer, assembled from off-the-shelf personal computers in just one month at a cost of As perhaps the clearest evidence yet of the computing power of sophisticated but inexpensive video-game consoles, the National Center for
slightly more than $5 millon, is about to be ranked as one of the fastest machines in the world. Supercomputing Applcations at the University of linois at Urbana-Champaign has assembled a supercomputer from an army of Sony

PlayStation 2's

Word of the low-cost supercomputer, put together by faculy, technicians and stadeats at Virginia Polytechnic Instiute, is shaking up the esoteric

world computing, where have traditionally cost from $100 millon to $250 milion and taken several The resulling system, with components purchased at retai prices, cost altle more than §50,000. The center's recearchers believe the system

years to buld may be capable of a halftrillon operations a second, well within the definiion of supercomputer, although it may not rank among the world's
500 fastest supercomputers.

The Virginia Tech supercomputer, put together from 1,100 Apple Macintosh cornputers, has been successfully tested in recent days, according

to Jack Dongarra, a University of Tennessee computer scientist who maintains 2 hsting of the world's 500 fastest machines Perhaps the most striking aspect of the project, which uses the open source Linuz operating system, is that the only hardiware engineering
involved was placing 70 of the individual game mackines in a rack and phigging them together with a high-speed Hewlet-Packard network

The official resls o the ranking until next month at & industry event. But the Apple-based supercomputer, switch, The center's scentists bought 100 machines, but are holding 30 in reserve, possibly for high-resolution display application

whichis powered by 2,200 LB.M microprocessors, was able to compute at 7.41 trilion operations a second, a speed surpassed by only three

other ulra-fast computers “Tttook alot of time because you have to cut ll of these things out of the plastic packaging," said Craig Steffen, a senior research scientist at the

center, who is one of four scientists working part time on the project

The scientists are taking advantage of a standard component of the Sony video-game console that was originaly intended to move and transform

piels rapicly on a television screen to produce lifelike graphics. The chip is not the PlayStation 2's MIPS microprocessor, but rather a graphics

10/14/2004 ©2004 £d Lazowska & Hank Levy 7 co-processor known as the Emotion Engine. That custom designed silicon chip is capable of producing up to 6.5 bilion mathematical operations
asecond

= o
(@ - © - (1 &) B[Jirome @ €] A

T B [ims]& -

panTt

[T [e

10/14/2004 © 2004 Ed Lazowska & Hank Levy 9 10/14/2004 © 2004 Ed Lazowska & Hank Levy 10

Storage Latency' Lower-level architecture affects the OS
How Far Away is the Data? even more dramatically
Andromeda e Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
109 Tape /Optical 2,000 Years — includes instruction set (synchronization, I/O, ...
Robot — also hardware components like MMU or DMA controllers
* Architectural support can vastly simplify (or
108 Disk Pluto 2 Years complicate!) OS tasks
— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory, in part because at that time PCs
lacked necessary hardware support
« Apollo workstation used two CPUs as a bandaid for non-
00 M 1.5 hr restartable instructions!
emory — Current _Intel-ba_sed PCs still Iack_ support for 64-bit
10 OnBoard Cache 10 min addressmg (which has been available for a decade on other
2 On Chip Cache . platfr?rmgil l\:lPS, Alphla,dIBM, etc...y) . .
1 Registers My Head 1 min « this will change mostly due to AMD’s new 64-bit architecture
©2004 Jim Gray, Microsoft Corporation 10/14/2004 ©2004 Ed Lazowska & Hank Levy 12

Architectural features affecting OS’s

« These features were built primarily to support OS’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection

1/0 control operations

interrupts and exceptions

protected modes of execution (kernel vs. user)

— protected instructions

— system calls (and software interrupts)

10/14/2004 © 2004 Ed Lazowska & Hank Levy 13

Protected instructions

* some instructions are restricted to the OS
— known as protected or privileged instructions
* e.g., only the OS can:
— directly access 1/0 devices (disks, network cards)
« why?
— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
< interrupt priority level
« why?
— halt instruction
* why?

10/14/2004 © 2004 Ed Lazowska & Hank Levy 14

OS protection

« So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
* VAX, x86 support 4 protection modes
« why more than 2?
— mode is set by status bit in a protected processor register
* user programs execute in user mode
« OS executes in kernel mode (OS == kernel)
« Protected instructions can only be executed in the
kernel mode
— what happens if user mode executes a protected instruction?

10/14/2004 © 2004 Ed Lazowska & Hank Levy 15

Crossing protection boundaries

* So how do user programs do something privileged?
— e.g., how can you write to a disk if you can’t do 1/0
instructions?
» User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
e There must be a system call instruction, which:
— causes an exception (throws a software interrupt), which
vectors to a kernel handler
— passes a parameter indicating which system call to invoke
saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller's parameters (e.g., pointers)
— must be a way to return to user mode once done

10/14/2004 © 2004 Ed Lazowska & Hank Levy 16

A kernel crossing illustrated

Netscape: read()

trap to kernel
mode; save app
user mode state

kernel mode
restore app
trap handler state, return to
user mode,
find read() resume
handler in
vector table

read() kernel routine

10/14/2004 ©2004 Ed Lazowska & Hank Levy 17

System call issues

* What would happen if kernel didn’t save state?
e Why must the kernel verify arguments?

* How can you reference kernel objects as arguments
or results to/from system calls?

10/14/2004 © 2004 Ed Lazowska & Hank Levy 18

Memory protection

« OS must protect user programs from each other
— maliciousness, ineptitude

« OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers
— are these protected?

10/14/2004

©2004 Ed Lazowska & Hank Levy

Prog A
base and limit registers
Prog B are loaded by OS before
starting program
Prog C

More sophisticated memory protection

« coming later in the course

* paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

10/14/2004

© 2004 Ed Lazowska & Hank Levy

20

OS control flow

after the OS has booted, all entry to the kernel
happens as the result of an event
— event immediately stops current execution
— changes mode to kernel mode, event handler is called
kernel defines handlers for each event type
— specific types are defined by the architecture
* e.g.: timer event, I/O interrupt, system call trap
— when the processor receives an event of a given type, it
« transfers control to handler within the OS
« handler saves program state (PC, regs, etc.)
« handler functionality is invoked
« handler restores program state, returns to program

10/14/2004 © 2004 Ed Lazowska & Hank Levy

Interrupts and exceptions

* Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
* e.g., the x86 ‘int’ instruction
* e.g., a page fault, write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
* e.g., device finishes /0
* e.g., timer fires

10/14/2004 © 2004 Ed Lazowska & Hank Levy 22

I/O control

e Issues:
— how does the kernel start an 1/0?
« special I/O instructions
* memory-mapped 1/O
— how does the kernel notice an 1/0 has finished?
« polling
 interrupts
Interrupts are basis for asynchronous I/O
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done

— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types
« who populates the vector table, and when?
— CPU switches to address indicated by vector specified by
interrupt signal

10/14/2004 ©2004 Ed Lazowska & Hank Levy

Timers

* How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt

— before it transfers to a user program, the OS loads the timer
with a time to interrupt

+ “guantum”: how big should it be set?
— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
« very interesting policy question: we'll dedicate a class to it
» Should the timer be privileged?
— for reading or for writing?

10/14/2004 ©2004 Ed Lazowska & Hank Levy 24

Synchronization

 Interrupts cause a wrinkle:
— may occur any time, causing code to execute that interferes
with code that was interrupted
— OS must be able to synchronize concurrent processes
« Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
« test-and-set
« load-linked store-conditional

10/14/2004 © 2004 Ed Lazowska & Hank Levy 25

“Concurrent programming”

* Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”

— modern “event-oriented” application programming is a
middle ground

* Arises from the architecture

» Can be sugar-coated, but cannot be totally
abstracted away

* Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

10/14/2004 © 2004 Ed Lazowska & Hank Levy 26

