
CSE 451: Operating Systems
Winter 2003
Lecture 14

FFS and LFS

Hank Levy
levy@cs.washington.edu

412 Sieg Hall

3/6/2003 © 2003 Hank Levy 2

File System Implementations

• We’ve looked at disks and file systems generically
– now it’s time to bridge the gap by talking about specific file

system implementations

• We’ll focus on two:
– BSD Unix FFS

• what’s at the heart of most UNIX file systems

– LFS
• a research file system originally from Berkeley

3/6/2003 © 2003 Hank Levy 3

BSD UNIX FFS

• FFS = “Fast File System”
– original (i.e. 1970’s) file system was very simple and

straightforwardly implemented
• but had very poor disk bandwidth utilization
• why? far too many disk seeks on average

• BSD UNIX folks did a redesign in the mid ’80’s
– FFS: improved disk utilization, decreased response time
– McKusick, Joy, Fabry, and Leffler
– basic idea is FFS is aware of disk structure

• I.e., place related things on nearby cylinders to reduce seeks

3/6/2003 © 2003 Hank Levy 4

File System Layout

• How does the FS use the disk to store files?
• FS defines a block size (e.g., 4KB)

– disk space allocated in granularity of blocks

• A “Master Block” defines the location of root directory
– always at a well-known location
– usually replicated for reliability

• A “free map” lists which blocks are free vs. allocated
– usually a bitmap, one bit per block on the disk
– also stored on disk, and cached in memory for performance

• Remaining disk blocks are used to store files/dirs
– how this is done is the essence of FFS

3/6/2003 © 2003 Hank Levy 5

Possible Disk Layout Strategies

• Files span multiple disks
– how do you find all of the blocks of a file?
– option 1: contiguous allocation

• like memory
• fast, simplifies directory access
• inflexible: causes fragmentation, needs compaction

– option 2: linked structure
• each block points to the next, directory points to first
• good for sequential access, bad for all others

– option 3: indexed structure
• an “index block” contains pointers to many other blocks
• handles random workloads better
• may need multiple index blocks, linked together

3/6/2003 © 2003 Hank Levy 6

Unix Inodes

• In Unix (including in FFS), “inodes” are blocks that
implement the index structure for files
– directory entries point to file inodes
– each inode contains 15 block pointers

• first 12 are direct blocks (I.e., 4KB blocks of file data)
• then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

… …

3/6/2003 © 2003 Hank Levy 7

Inodes and Path Search

• Unix Inodes are NOT directories
– they describe where on disk the blocks for a file are placed

• directories are just files, so each directory also has an inode
that describes where the blocks for the directory is placed

• Directory entries map file names to inodes
– to open “/one”, use master block to find inode for “/” on disk

• open “/”, look for entry for “one”
• this gives the disk block number for inode of “one”

– read the inode for “one” into memory
• this inode says where the first data block is on disk
• read that data block into memory to access the data in the file

3/6/2003 © 2003 Hank Levy 8

Data and Inode placement

• Original (non-FFS) unix FS had two major problems:
– 1. data blocks are allocated randomly in aging file systems

• blocks for the same file allocated sequentially when FS is new
• as FS “ages” and fills, need to allocate blocks freed up when

other files are deleted
– problem: deleted files are essentially randomly placed
– so, blocks for new files become scattered across the disk!

– 2. inodes are allocated far from blocks
• all inodes at beginning of disk, far from data
• traversing file name paths, manipulating files, directories

requires going back and forth from inodes to data blocks

– BOTH of these generate many long seeks!

3/6/2003 © 2003 Hank Levy 9

Cylinder groups

• FFS addressed these problems using notion of a
cylinder group
– disk partitioned into groups of cylinders
– data blocks from a file all placed in same cylinder group
– files in same directory placed in same cylinder group
– inode for file in same cylinder group as file’s data

• Introduces a free space requirement
– to be able to allocate according to cylinder group, the disk

must have free space scattered across all cylinders
– in FFS, 10% of the disk is reserved just for this purpose!

• good insight: keep disk partially free at all times!
• this is why it may be possible for df to report >100%

3/6/2003 © 2003 Hank Levy 10

File Buffer Cache (not just for FFS)

• Exploit locality by caching file blocks in memory
– cache is system wide, shared by all processes
– even a small (4MB) cache can be very effective
– many FS’s “read-ahead” into buffer cache

• Caching writes
– some apps assume data is on disk after write

• need to “write-through” the buffer cache
• or:

– “write-behind”: maintain queue of uncommitted blocks, periodically flush.
Unreliable!

– NVRAM: write into battery-backed RAM. Expensive!
– LFS: we’ll talk about this soon!

• Buffer cache issues:
– competes with VM for physical frames

• integrated VM/buffer cache?
– need replacement algorithms here

• LRU usually

3/6/2003 © 2003 Hank Levy 11

Other FFS innovations

• Small blocks (1KB) caused two problems:
– low bandwidth utilization
– small max file size (function of block size)
– FFS fixes by using a larger block (4KB)

• allows for very large files (1MB only uses 2 level indirect)
• but, introduces internal fragmentation

– there are many small files (I.e., <4KB)
• fix: introduce “fragments”

– 1KB pieces of a block

• Old FS was unaware of disk parameters
– FFS: parameterize FS according to disk and CPU

characteristics
• e.g.: account for CPU interrupt and processing time to layout

sequential blocks
– skip according to rotational rate and CPU latency!

3/6/2003 © 2003 Hank Levy 12

Log-Structured File System (LFS)

• LFS was designed in response to two trends in
workload and disk technology:
– 1. Disk bandwidth scaling significantly (40% a year)

• but, latency is not

– 2. Large main memories in machines
• therefore, large buffer caches

– absorb large fraction of read requests in caches

• can use for writes as well
– coalesce small writes into large writes

• LFS takes advantage of both to increase FS
performance
– Rosenblum and Ousterhout (Berkeley, ’91)

• note: Rosenblum went on to become Stanford prof, and to co-
found VMware, inc!

3/6/2003 © 2003 Hank Levy 13

FFS problems that LFS solves

• FFS: placement improved, but can still have many
small seeks
– possibly related files are physically separated
– indoes separated from files (small seeks)
– directory entries separate from inodes

• FFS: metadata required synchronous writes
– with small files, most writes are to metadata
– synchronous writes are very slow!

3/6/2003 © 2003 Hank Levy 14

LFS: The Basic Idea

• Treat the entire disk as a single log for appending
– collect writes in the disk buffer cache, and write out the

entire collection of writes in one large request
• leverages disk bandwith with large sequential write
• no seeks at all! (assuming head at end of log)

– all info written to disk is appended to log
• data blocks, attributes, inodes, directories, .etc.

• Sounds simple!
– but it’s really complicated under the covers

3/6/2003 © 2003 Hank Levy 15

LFS Challenges

• There are two main challenges with LFS:
– 1. locating data written in the log

• FFS places files in a well-known location, LFS writes data “at
the end of the log”

– 2. managing free space on the disk
• disk is finite, and therefore log must be finite
• cannot always append to log!

– need to recover deleted blocks in old part of log
– need to fill holes created by recovered blocks

3/6/2003 © 2003 Hank Levy 16

LFS: locating data

• FFS uses inodes to locate data blocks
– inodes preallocated in each cylinder group
– directories contain locations of inodes

• LFS appends inodes to end of log, just like data
– makes them hard to find

• Solution:
– use another level of indirection: inode maps
– inode maps map file #s to inode location
– location of inode map blocks are kept in a checkpoint region
– checkpoint region has a fixed location
– cache inode maps in memory for performance

3/6/2003 © 2003 Hank Levy 17

LFS: free space management

• LFS: append-only quickly eats up all disk space
– need to recover deleted blocks

• Solution:
– fragment log into segments
– thread segments on disk

• segments can be anywhere

– reclaim space by cleaning segments
• read segment
• copy live data to end of log
• now have free segment you can reuse!

– cleaning is a big problem
• costly overhead, when do you do it?

– “idleness is not sloth”

3/6/2003 © 2003 Hank Levy 18

An Interesting Debate

• Ousterhout vs. Seltzer
– OS researchers have very “energetic” personalities

• famous for challenging each others’ ideas in public
– Seltzer published a 1995 paper comparing and contrasting BSD

LFS with conventional FFS
• Ousterhout published a “critique of Seltzer’s LFS Measurements”,

rebutting arguments that LFS performs poorly in some situations
• Seltzer published “A Response to Ousterhout’s Critique of LFS

Measurements”, rebutting the rebuttal…
• Ousterhout published “A Response to Seltzer’s Response”, rebutting

the rebuttal of the rebuttal…
– moral of the story:

• *very* difficult to predict how a FS will be used
– so it’s hard to generate reasonable benchmarks, let alone a reasonable FS

design

• *very* difficult to measure a FS in practice
– depends on a HUGE number of parameters, including workload and

hardware architecture

