L og-Structured File Systems

Hank Levy

Basic Problem

Most file systems now have large memory caches
(buffers) to hold recently-accessed blocks

M ost reads arethus satisfied from the buffer cache

From the point of view of the disk, most trafficiswrite
traffic

So to speed up disk 1/O, we need to make writes go
faster

But disk performanceislimited ultimately by disk head
movement

With current file systems, adding a block takes several

writes (to thefileand to the metadata), requiring
several disk seeks 5

LFS: Basic |dea

An alternativeisto usethedisk asalog
A logisadatastructurethat iswritten only at the head

If the disk were managed as a log, there would be
effectively no head seeks

The“file’ isalways added to sequentially

New data and metadata (inodes, directories) are
accumulated in the buffer cache, then written all at
oncein large blocks (e.g., segments of .5M or 1M)

Thiswould greatly increase disk thruput

How doesthisreally work? How doweread? What
doesthedisk structurelook like? etc.? 3

L FS Data Structures

Inodes. asin Unix, inodes contain physical block
pointersfor files

Inode map: atableindicating where each inodeison
the disk

— 1node map blocks are written as part of the segment; atablein a
fixed checkpoint region on disk points to those blocks

segment summary: info on every block in a segment

segment usage table: info on theamount of “live” data
In a block

LFSvs. UFS

filel file2 . Inode

! i " . . directory

data

dirl dir2
Unix File _
System . Inode map

dir2

dirl
Blocks written to
create two 1-block
Log > files: dirl/filel and

dir2/file2, in UFS and
LFS

L og-Structured
File System

filel file2

LFS: read and write

Every write causes new blocksto be added to the
current segment buffer in memory; when that segment
Isfull, it iswritten to the disk

Reads are no different than in Unix File System, once
we find theinodefor afile (in LFS, using theinode
map, which is cached in memory)

Over time, segmentsin the log become fragmented as
we replace old blocks of fileswith new block

Problem: in steady state, we need to have contiguous
free space in which towrite

Cleaning

Themajor problem for a LFSiscleaning, i.e.,
producing contiguous free space on disk

A cleaner process‘“cleans’ old segments, i.e., takes
several non-full segments and compacts them, creating
one full segment, plusfree space

The cleaner chooses segmentson disk based on:

— utilization: how much isto be gained by cleaning them
— age: how likely is the segment to change soon anyway

Cleaner cleans“cold” segmentsat 75% utilization and
“hot” segmentsat 15% utilization (becauseit’sworth
waiting on “hot” segmentsfor blocksto berewritten by

current activity) .

LFS Summary

Basic idea isto handlereadsthrough caching and
writes by appending large segmentsto alog

Greatly increases disk performance on writes, file
creates, deletes,

Readsthat are not handled by buffer cache are same
performance as normal file system

Requires cleaning demon to produce clean space, which
takes additional cpu time

