CSE 451: Operating Systems
Winter 2003

Lecture 13
File Systems

Hank Levy
levy@cs.washington.edu
412 Sieg Hall

File Systems

 The concept of a file system is simple

— the implementation of the abstraction for secondary storage
 abstraction = files

— logical organization of files into directories
» the directory hierarchy

— sharing of data between processes, people and machines
e access control, consistency, ...

3/6/2003 © 2003 Hank Levy

Files

« Afileis a collection of data with some properties
— contents, size, owner, last read/write time, protection ...

* Files may also have types

— understood by file system
» device, directory, symbolic link

— understood by other parts of OS or by runtime libraries
» executable, dll, source code, object code, text file, ...

 Type can be encoded in the file’s name or contents

— windows encodes type in hame
e .com, .exe, .bat, .dll, .jpg, .mov, .mp3, ...
— unix has a smattering of both
* in content via magic numbers or initial characters (e.g., #!)

3/6/2003 © 2003 Hank Levy

Unix

* create(name)

» open(name, mode)
 read(fd, buf, len)

» write(fd, buf, len)

* sync(fd)

» seek(fd, pos)

* close(fd)
 unlink(name)

* rename(old, new)

3/6/2003

Basic operations

NT

» CreateFile(name, CREATE)
» CreateFile(name, OPEN)

* ReadFile(handle, ...)

» WriteFile(handle, ...)

» FlushFileBuffers(handle, ...)
» SetFilePointer(handle, ...)

» CloseHandle(handle, ...)

» DeleteFile(name)

» CopyFile(name)

* MoveFile(name)

© 2003 Hank Levy

File Access Methods

o Some file systems provide different access methods
that specify ways the application will access data
— sequential access
* read bytes one at a time, in order
— direct access
» random access given a block/byte #
— record access
« file is array of fixed- or variable-sized records
— Indexed access

* FS contains an index to a particular field of each record in a file
» apps can find a file based on value in that record (similar to DB)

 Why do we care about distinguishing sequential from
direct access?

— what might the FS do differently in these cases?

3/6/2003 © 2003 Hank Levy 5

Directories

* Directories provide:

— a way for users to organize their files
— a convenient file name space for both users and FS’s

* Most file systems support multi-level directories
— naming hierarchies (/, /usr, /usr/local, /usr/local/bin, ...)

* Most file systems support the notion of current
directory

— absolute names: fully-qualified starting from root of FS
bash$ cd /usr/| ocal

— relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)
bash$ cd bin (relative, equivalent to cd /ustr/local/bin)

3/6/2003 © 2003 Hank Levy

Directory Internals

« A directory is typically just a file that happens to
contain special metadata
— directory = list of (name of file, file attributes)

— attributes include such things as:
* Size, protection, location on disk, creation time, access time, ...

— the directory list is usually unordered (effectively random)
* when you type “Is”, the “Is” command sorts the results for you

3/6/2003 © 2003 Hank Levy

Path Name Translation

e Let’s say you want to open “/one/two/three”

fd

= open(“/one/two/three”, O RDWR);

 What goes on inside the file system?

open directory “/” (well known, can always find)

search the directory for “one”, get location of “one”

open directory “one”, search for “two”, get location of “two”
open directory “two”, search for “three”, get loc. of “three”
open file “three”

(of course, permissions are checked at each step)

 FS spends lots of time walking down directory paths
— this is why open is separate from read/write (session state)

3/6/2003

OS will cache prefix lookups to enhance performance
« /a/b, /a/bb, /a/bbb all share the “/a” prefix

© 2003 Hank Levy

Protection Systems

 FS must implement some kind of protection system

— to control who can access a file (user)
— to control how they can access it (e.g., read, write, or exec)

 More generally:
— generalize files to objects (the “what”)
— generalize users to principles (the “who”, user or program)
— generalize read/write to actions (the “how”, or operations)

« A protection system dictates whether a given action
performed by a given subject on a given object
should be allowed

— e.g., you can read or write your files, but others cannot
— e.g.,yourcanread /etc/notd butyou cannot write to it

3/6/2003 © 2003 Hank Levy

Model for Representing Protection

« Two different ways of thinking about it:

— access control lists (ACLs)

» for each object, keep list of subjects and subj’s allowed actions
— capabilities

» for each subject, keep list of objects and subj’s allowed actions

« Both can be represented with the following matrix:

o ——————~ \ objects
L \
:/etc/passwd || Inome/gribble | /home/guest
i I
root L rw Hw rw
i |
subjects | gribble |ir | w r
Trimar il T 1. B .
guest ¢ I D r | | | capability
\\ ________ /
ACL

3/6/2003 © 2003 Hank Levy 10

ACLs vs. Capabillities

o Capabilities are easy to transfer

— they are like keys: can hand them off
— they make sharing easy

« ACLs are easier to manage

— object-centric, easy to grant and revoke
» to revoke capability, need to keep track of subjects that have it
* hard to do, given that subjects can hand off capabilities

 ACLs grow large when object is heavily shared
— can simplify by using “groups”
e put users in groups, put groups in ACLs
« you are all in the “WMware powerusers” group on Win2K
— additional benefit

» change group membership, affects ALL objects that have this
group in its ACL

3/6/2003 © 2003 Hank Levy 11

