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Demand Paging

« We’'ve hinted that pages can be moved between
memory and disk

— this process is called demand paging
* is different than swapping (entire process moved, not page)
— OS uses main memory as a (page) cache of all of the data
allocated by processes in the system
« initially, pages are allocated from physical memory frames

« when physical memory fills up, allocating a page in requires
some other page to be evicted from its physical memory frame

— evicted pages go to disk (only need to write if they are dirty)
* to a swap file
 movement of pages between memory / disk is done by the OS

* is transparent to the application
— except for performance...
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Page Faults

 What happens to a process that references a VA in a
page that has been evicted?

— when the page was evicted, the OS sets the PTE as invalid
and stores (in PTE) the location of the page in the swap file

— when a process accesses the page, the invalid PTE will
cause an exception (page fault) to be thrown

— the OS will run the page fault handler in response
« handler uses invalid PTE to locate page in swap file

* handler reads page into a physical frame, updates PTE to point
to it and to be valid

» handler restarts the faulted process
e But: where does the page that's read in go?

— have to evict something else (page replacement algorithm)

» OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions
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Why does this work?

e Locality!
— temporal locality
 |locations referenced recently tend to be referenced again soon

— spatial locality

 |locations near recently references locations are likely to be
referenced soon (think about why)

« Locality means paging can be infrequent
— once you've paged something in, it will be used many times
— On average, you use things that are paged Iin

— but, this depends on many things:
» degree of locality in application
» page replacement policy and application reference pattern
« amount of physical memory and application footprint
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Why is this “demand” paging?

* Think about when a process first starts up:
— it has a brand new page table, with all PTE valid bits ‘false’
— Nno pages are yet mapped to physical memory

— when process starts executing:
 instructions immediately fault on both code and data pages
 faults stop when all necessary code/data pages are in memory

» only the code/data that is needed (demanded!) by process
needs to be loaded

» what is needed changes over time, of course...
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Evicting the best page

e The goal of the page replacement algorithm:

— reduce fault rate by selecting best victim page to remove

— the best page to evict is one that will never be touched again
» as process will never again fault on it

— “never” is a long time

» Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

* Rest of this lecture:
— survey a bunch of replacement algorithms
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#1: Belady’s Algorithm

* Provably optimal lowest fault rate (remember SJF?)
— pick the page that won'’t be used for longest time in future
— problem: impossible to predict future

 Why is Belady’s algorithm useful?

— as a yardstick to compare other algorithms to optimal
 if Belady’s isn’t much better than yours, yours is pretty good

e |s there a lower bound?

— unfortunately, lower bound depends on workload
* but, random replacement is pretty bad
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#2: FIFO

FIFO is obvious, and simple to implement

— when you page in something, put in on tail of list

— on eviction, throw away page on head of list
 Why might this be good?

— maybe the one brought in longest ago is not being used
Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

FIFO suffers from Belady’s Anomaly

— fault rate might increase when algorithm is given more
physical memory

e avery bad property
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#3: Least Recently Used (LRU)

 LRU uses reference information to make a more
Informed replacement decision
— idea: past experience gives us a guess of future behavior

— on replacement, evict the page that hasn’t been used for the
longest amount of time

 LRU looks at the past, Belady’s wants to look at future
— when does LRU do well?
« when does it suck?
* Implementation

— to be perfect, must grab a timestamp on every memory
reference and put it in the PTE (way too $3)

— S0, we need an approximation...
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Approximating LRU

 Many approximations, all use the PTE reference bit

— keep a counter for each page

— at some regular interval, for each page, do:
o if ref bit = 0, increment the counter (hasn’t been used)
 if ref bit = 1, zero the counter (has been used)
» regardless, zero ref bit

— the counter will contain the # of intervals since the last
reference to the page

» page with largest counter is least recently used

e Some architectures don’'t have PTE reference bits

— can simulate reference bit using the valid bit to induce faults
* hack, hack, hack
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#4: LRU Clock

 AKA Not Recently Used (NRU) or Second Chance

— replace page that is “old enough”
— arrange all physical page frames in a big circle (clock)
 just a circular linked list
— a “clock hand” is used to select a good LRU candidate
» sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’'t been used recently, we have a victim
— S0, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory

— if memory is large, “accuracy” of information degrades
« add more hands to fix
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Another Problem: allocation of frames

e In a multiprogramming system, we need a way to
allocate physical memory to competing processes
— what if a victim page belongs to another process?
— family of replacement algorithms that takes this into account

* Fixed space algorithms
— each process is given a limit of pages it can use
— when it reaches its limit, it replaces from its own pages
— local replacement: some process may do well, others suffer

« Variable space algorithms
— processes’ set of pages grows and shrinks dynamically

— global replacement: one process can ruin it for the rest
 linux uses global replacement
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Important concept: working set model

A working set of a process is used to model the
dynamic locality of its memory usage
— 1.e., working set = set of pages process currently “needs”
— formally defined by Peter Denning in the 1960’s
e Definition:
— WS(t,w) = {pages P such that P was referenced in the time
interval (t, t-w)}
» t—time, w — working set window (measured in page refs)

e a page is in the working set (WS) only if it was referenced in the
last w references
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#5: Working Set Size

 The working set size changes with program locality

— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

 Intuitively, working set must be in memory, otherwise
you’ll experience heavy faulting (thrashing)

— when people ask “How much memory does Netscape
need?”, really they are asking “what is Netscape’s average
(or worst case) working set size?”
* Hypothetical algorithm:
— associate parameter “w” with each process

— only allow a process to start if it's “w”, when added to all
other processes, still fits in memory

» use a local replacement algorithm within each process
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#6: Page Fault Frequency (PFF)

 PFF is a variable-space algorithm that uses a more
ad-hoc approach
— monitor the fault rate for each process

— If fault rate is above a given threshold, give it more memory
» so that it faults less
» doesn’t always work (FIFO, Belady’s anomaly)

— if the fault rate is below threshold, take away memory

» should fault more
e again, not always
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Thrashing

 What the OS does if page replacement algo’s falil

happens if most of the time is spent by an OS paging data back
and forth from disk

* no time is spent doing useful work

» the system is overcommitted

* no idea which pages should be in memory to reduced faults

» could be that there just isn’t enough physical memory for all processes

solutions?

* Yields some insight into systems research[ers]
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if system has too much memory

» page replacement algorithm doesn’t matter (overprovisioning)
if system has too little memory

» page replacement algorithm doesn’t matter (overcommitted)

problem is only interesting on the border between overprovisioned
and overcommitted

* many research papers live here, but not many real systems do...
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Summary

 demand paging

start with no physical pages mapped, load them in on demand

« page replacement algorithms

#1. Belady’s — optimal, but unrealizable

#2: Fifo — replace page loaded furthest in past

#3. LRU —replace page referenced furthest in past
» approximate using PTE reference bit

#4:. LRU Clock — replace page that is “old enough”

#5: working set — keep set of pages in memory that induces the
minimal fault rate

#6: page fault frequency — grow/shrink page set as a function of
fault rate

* local vs. global replacement
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should processes be allowed to evict each other’s pages?
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