CSE 451: Operating Systems
Winter 2003

Lecture 11
Demand Paging and
Page Replacement

Hank Levy
levy@cs.washington.edu
412 Sieg Hall

Demand Paging

« We’'ve hinted that pages can be moved between
memory and disk

— this process is called demand paging
* is different than swapping (entire process moved, not page)
— OS uses main memory as a (page) cache of all of the data
allocated by processes in the system
« initially, pages are allocated from physical memory frames

« when physical memory fills up, allocating a page in requires
some other page to be evicted from its physical memory frame

— evicted pages go to disk (only need to write if they are dirty)
* to a swap file
 movement of pages between memory / disk is done by the OS

* is transparent to the application
— except for performance...

3/6/2003 © 2003 Hank Levy

Page Faults

 What happens to a process that references a VA in a
page that has been evicted?

— when the page was evicted, the OS sets the PTE as invalid
and stores (in PTE) the location of the page in the swap file

— when a process accesses the page, the invalid PTE will
cause an exception (page fault) to be thrown

— the OS will run the page fault handler in response
« handler uses invalid PTE to locate page in swap file

* handler reads page into a physical frame, updates PTE to point
to it and to be valid

» handler restarts the faulted process
e But: where does the page that's read in go?

— have to evict something else (page replacement algorithm)

» OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions

3/6/2003 © 2003 Hank Levy 3

Why does this work?

e Locality!
— temporal locality
 |locations referenced recently tend to be referenced again soon

— spatial locality

 |locations near recently references locations are likely to be
referenced soon (think about why)

« Locality means paging can be infrequent
— once you've paged something in, it will be used many times
— On average, you use things that are paged Iin

— but, this depends on many things:
» degree of locality in application
» page replacement policy and application reference pattern
« amount of physical memory and application footprint

3/6/2003 © 2003 Hank Levy

Why is this “demand” paging?

* Think about when a process first starts up:
— it has a brand new page table, with all PTE valid bits ‘false’
— Nno pages are yet mapped to physical memory

— when process starts executing:
 instructions immediately fault on both code and data pages
 faults stop when all necessary code/data pages are in memory

» only the code/data that is needed (demanded!) by process
needs to be loaded

» what is needed changes over time, of course...

3/6/2003 © 2003 Hank Levy

Evicting the best page

e The goal of the page replacement algorithm:

— reduce fault rate by selecting best victim page to remove

— the best page to evict is one that will never be touched again
» as process will never again fault on it

— “never” is a long time

» Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

* Rest of this lecture:
— survey a bunch of replacement algorithms

3/6/2003 © 2003 Hank Levy 5

#1: Belady’s Algorithm

* Provably optimal lowest fault rate (remember SJF?)
— pick the page that won'’t be used for longest time in future
— problem: impossible to predict future

 Why is Belady’s algorithm useful?

— as a yardstick to compare other algorithms to optimal
 if Belady’s isn’t much better than yours, yours is pretty good

e |s there a lower bound?

— unfortunately, lower bound depends on workload
* but, random replacement is pretty bad

3/6/2003 © 2003 Hank Levy

#2: FIFO

FIFO is obvious, and simple to implement

— when you page in something, put in on tail of list

— on eviction, throw away page on head of list
 Why might this be good?

— maybe the one brought in longest ago is not being used
Why might this be bad?

— then again, maybe it is being used

— have absolutely no information either way

FIFO suffers from Belady’s Anomaly

— fault rate might increase when algorithm is given more
physical memory

e avery bad property

3/6/2003 © 2003 Hank Levy

#3: Least Recently Used (LRU)

 LRU uses reference information to make a more
Informed replacement decision
— idea: past experience gives us a guess of future behavior

— on replacement, evict the page that hasn’t been used for the
longest amount of time

 LRU looks at the past, Belady’s wants to look at future
— when does LRU do well?
« when does it suck?
* Implementation

— to be perfect, must grab a timestamp on every memory
reference and put it in the PTE (way too $3)

— S0, we need an approximation...

3/6/2003 © 2003 Hank Levy

Approximating LRU

 Many approximations, all use the PTE reference bit

— keep a counter for each page

— at some regular interval, for each page, do:
o if ref bit = 0, increment the counter (hasn’t been used)
 if ref bit = 1, zero the counter (has been used)
» regardless, zero ref bit

— the counter will contain the # of intervals since the last
reference to the page

» page with largest counter is least recently used

e Some architectures don’'t have PTE reference bits

— can simulate reference bit using the valid bit to induce faults
* hack, hack, hack

3/6/2003 © 2003 Hank Levy 10

#4: LRU Clock

 AKA Not Recently Used (NRU) or Second Chance

— replace page that is “old enough”
— arrange all physical page frames in a big circle (clock)
 just a circular linked list
— a “clock hand” is used to select a good LRU candidate
» sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’'t been used recently, we have a victim
— S0, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory

— if memory is large, “accuracy” of information degrades
« add more hands to fix

3/6/2003 © 2003 Hank Levy

11

Another Problem: allocation of frames

e In a multiprogramming system, we need a way to
allocate physical memory to competing processes
— what if a victim page belongs to another process?
— family of replacement algorithms that takes this into account

* Fixed space algorithms
— each process is given a limit of pages it can use
— when it reaches its limit, it replaces from its own pages
— local replacement: some process may do well, others suffer

« Variable space algorithms
— processes’ set of pages grows and shrinks dynamically

— global replacement: one process can ruin it for the rest
 linux uses global replacement

3/6/2003 © 2003 Hank Levy 12

Important concept: working set model

A working set of a process is used to model the
dynamic locality of its memory usage
— 1.e., working set = set of pages process currently “needs”
— formally defined by Peter Denning in the 1960’s
e Definition:
— WS(t,w) = {pages P such that P was referenced in the time
interval (t, t-w)}
» t—time, w — working set window (measured in page refs)

e a page is in the working set (WS) only if it was referenced in the
last w references

3/6/2003 © 2003 Hank Levy 13

#5: Working Set Size

 The working set size changes with program locality

— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

 Intuitively, working set must be in memory, otherwise
you’ll experience heavy faulting (thrashing)

— when people ask “How much memory does Netscape
need?”, really they are asking “what is Netscape’s average
(or worst case) working set size?”
* Hypothetical algorithm:
— associate parameter “w” with each process

— only allow a process to start if it's “w”, when added to all
other processes, still fits in memory

» use a local replacement algorithm within each process

3/6/2003 © 2003 Hank Levy 14

#6: Page Fault Frequency (PFF)

 PFF is a variable-space algorithm that uses a more
ad-hoc approach
— monitor the fault rate for each process

— If fault rate is above a given threshold, give it more memory
» so that it faults less
» doesn’t always work (FIFO, Belady’s anomaly)

— if the fault rate is below threshold, take away memory

» should fault more
e again, not always

3/6/2003 © 2003 Hank Levy

15

Thrashing

 What the OS does if page replacement algo’s falil

happens if most of the time is spent by an OS paging data back
and forth from disk

* no time is spent doing useful work

» the system is overcommitted

* no idea which pages should be in memory to reduced faults

» could be that there just isn’t enough physical memory for all processes

solutions?

* Yields some insight into systems research[ers]

3/6/2003

if system has too much memory

» page replacement algorithm doesn’t matter (overprovisioning)
if system has too little memory

» page replacement algorithm doesn’t matter (overcommitted)

problem is only interesting on the border between overprovisioned
and overcommitted

* many research papers live here, but not many real systems do...

© 2003 Hank Levy 16

Summary

 demand paging

start with no physical pages mapped, load them in on demand

« page replacement algorithms

#1. Belady’s — optimal, but unrealizable

#2: Fifo — replace page loaded furthest in past

#3. LRU —replace page referenced furthest in past
» approximate using PTE reference bit

#4:. LRU Clock — replace page that is “old enough”

#5: working set — keep set of pages in memory that induces the
minimal fault rate

#6: page fault frequency — grow/shrink page set as a function of
fault rate

* local vs. global replacement

3/6/2003

should processes be allowed to evict each other’s pages?

© 2003 Hank Levy

17

