
1

CSE 451: Operating Systems

Autumn 2003

Lecture 5

Threads

Hank Levy
levy@cs.washington.edu

Allen Center 596

10/13/03 © 2003 Hank Levy 2

Processes

• A process includes many things:
– an address space (all the code and data pages)

• protection boundary

– OS resources (e.g., open files) and accounting info
– hardware execution state (PC, SP, regs)

• Creating a new process is costly, because of all of
the data structures that must be allocated/initialized
– Linux: over 95 fields in task_struct

• on a 700 MHz pentium, fork+exit = 251 microseconds,
fork+exec = 1024 microseconds

• Interprocess communication is costly, since it must
usually go through the OS
– overhead of system calls

• 0.46 microseconds on 700 MHz pentium

10/13/03 © 2003 Hank Levy 3

Parallel Programs

• Imagine a web server, which forks off copies of itself
to handle multiple simultaneous tasks
– or, imagine we have any parallel program on a

multiprocessor

• To execute these, we need to:
– create several processes that execute in parallel
– cause each to map to the same address space to share data

• see the shmget() system call for one way to do this (kind of)

– have the OS schedule them in parallel
• multiprogramming or true parallel processing on an SMP

• This is really inefficient
– space: PCB, page tables, etc.

– time: creating OS structures, fork and copy addr space, etc.

10/13/03 © 2003 Hank Levy 4

Can we do better?

• What’s similar in these processes?
– they all share the same code and data (address space)

– they all share the same privileges
– they all share the same resources (files, sockets, etc.)

• What’s different?
– each has its own hardware execution state

• PC, registers, stack pointer, and stack

• Key idea:
– separate the concept of

• a process (address space, etc.) from that of

• a minimal “thread of control” (execution state: PC, etc.)

– this execution state is usually called a thread, or sometimes,
a lightweight process

10/13/03 © 2003 Hank Levy 5

Threads and processes

• Most modern OS’s (Mach, Chorus, NT, modern Unix)
therefore support two entities:
– the process, which defines the address space and general

process attributes (such as open files, etc.)

– the thread, which defines a sequential execution stream
within a process

• A thread is bound to a single process
– processes, however, can have multiple threads executing

within them

– sharing data between threads is cheap: all see same
address space

• Threads become the unit of scheduling
– processes are just containers in which threads execute

10/13/03 © 2003 Hank Levy 6

Thread Design Space

address
space

thread

one thread/process

many processes

many threads/process

many processes

one thread/process

one process

many threads/process

one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

2

10/13/03 © 2003 Hank Levy 7

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

10/13/03 © 2003 Hank Levy 8

(new) Address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

SP

PC

10/13/03 © 2003 Hank Levy 9

Process/Thread Separation

• Separating threads and processes makes it easier to
support multi-threaded applications
– creating concurrency does not require creating new

processes

• Concurrency (multithreading) is useful for:
– improving program structure (the Java argument)
– handling concurrent events (e.g., web servers)

– building parallel programs (e.g., raytracer)

• So, multithreading is useful even on a uniprocessor
– even though only one thread can run at a time

10/13/03 © 2003 Hank Levy 10

Kernel thread and user-level threads

• Who is responsible for creating/managing threads?

• Two answers, in general:
– the OS (kernel threads)

• thread creation and management requires system calls

– the user-level process (user-level threads)
• a library linked into the program manages the threads

• Why is user-level thread management possible?
– threads share the same address space

• therefore the thread manager doesn’t need to manipulate
address spaces

– threads only differ in hardware contexts (roughly)
• PC, SP, registers

• these can be manipulated by the user-level process itself!

10/13/03 © 2003 Hank Levy 11

Kernel Threads

• OS now manages threads and processes
– all thread operations are implemented in the kernel
– OS schedules all of the threads in a system

• if one thread in a process blocks (e.g. on I/O), the OS knows
about it, and can run other threads from that process

• possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes
– less state to allocate and initialize

• But, they can still be too expensive
– thread operations are all system calls

• OS must perform all of the usual argument checks
• but want them to be as fast as a procedure call!

– must maintain kernel state for each thread
• can place limit on # of simultaneous threads, typically ~1000

10/13/03 © 2003 Hank Levy 12

User-Level Threads

• To make threads cheap and fast, they need to be
implemented at the user level
– managed entirely by user-level library, e.g. libpthreads.a

• User-level threads are small and fast
– each thread is represented simply by a PC, registers, a

stack, and a small thread control block (TBC)
– creating a thread, switching between threads, and

synchronizing threads are done via procedure calls
• no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than
kernel threads as a result

3

10/13/03 © 2003 Hank Levy 13

Performance example

• On a 700MHz Pentium running Linux 2.2.16:

– Processes
• fork/exit: 251 ms

– Kernel threads
• pthread_create()/pthread_join(): 94 ms

– User-level threads
• pthread_create()/pthread_join: 4.5 ms

10/13/03 © 2003 Hank Levy 14

User-level Thread Limitations

• But, user-level threads aren’t perfect
– tradeoff, as with everything else

• User-level threads are invisible to the OS
– there is no integration with the OS

• As a result, the OS can make poor decisions
– scheduling a process with only idle threads

– blocking a process whose thread initiated I/O, even though
the process has other threads that are ready to run

– unscheduling a process with a thread holding a lock

• Solving this requires coordination between the kernel
and the user-level thread manager

10/13/03 © 2003 Hank Levy 15

Coordinating K/L and U/L Threads

• Another possibility:
– use both K/L and U/L threads in a single system
– can associate a user-level thread with a kernel-level thread
– or, can multiplex user-level threads on top of kernel threads

• “scheduler activations”
– a research paper from UW with huge effect on industry
– each process can request one or more kernel threads

• process is given responsibility for mapping user-level threads
onto kernel threads

• kernel promises to notify user-level before it suspends or
destroys a kernel thread

• pop question:
– why would a process have more user-level threads than

kernel threads?

10/13/03 © 2003 Hank Levy 16

Thread Interface

• This is taken from the POSIX pthreads API:

– t = pthread_create(attributes, start_procedure)
• creates a new thread of control

• new thread begins executing at start_procedure

– pthread_cond_wait(condition_variable)
• the calling thread blocks, sometimes called thread_block()

– pthread_signal(condition_variable)
• starts the thread waiting on the condition variable

– pthread_exit()
• terminates the calling thread

– pthread_wait(t)
• waits for the named thread to terminate

10/13/03 © 2003 Hank Levy 17

User-level thread implementation

• a thread scheduler determines when a thread runs
– it uses queues to keep track of what threads are doing

• just like the OS and processes

• but, implemented at user-level as a library

– run queue: threads currently running

– ready queue: threads ready to run
– wait queue: threads blocked for some reason

• maybe blocked on I/O, maybe blocked on a lock

• how can you prevent a thread from hogging the
CPU?
– how did the OS handle this?

10/13/03 © 2003 Hank Levy 18

Preemptive vs. non-preemptive

• Strategy 1: force everybody to cooperate
– a thread willingly gives up the CPU by calling yield()
– yield() calls into the scheduler, which context switches to

another ready thread
– what happens if a thread never calls yield()?

• Stategy 2: use preemption
– scheduler requests that a timer interrupt be delivered by the

OS periodically
• usually delivered as a UNIX signal (man signal)
• signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware

– at each timer interrupt, scheduler gains control and context
switches as appropriate

4

10/13/03 © 2003 Hank Levy 19

Thread context switch

• Very simple for user-level threads:
– save context of currently running thread

• push machine state onto thread stack

– restore context of the next thread
• pop machine state from next thread’s stack

– return to caller as the new thread
• execution resumes at PC of next thread

• This is all done by assembly language
– it works at the level of the procedure calling convention

• thus, it cannot be implemented using procedure calls

