
1

CSE 451: Operating Systems
Autumn 2003

Lecture 4
Processes

Hank Levy
levy@cs.washington.edu

Allen Center 596

10/13/03 © 2003 Hank Levy 2

Process Management

• This lecture begins a series of topics on processes,
threads, and synchronization
– this is perhaps the most important part of the class

– there definitely will be several questions on these topics on
the midterm

• Today: processes and process management
– what are the OS units of execution?

– how are they represented inside the OS?
– how is the CPU scheduled across processes?

– what are the possible execution states of a process?
• and how does the system move between them?

10/13/03 © 2003 Hank Levy 3

The Process

• The process is the OS’s abstraction for execution
– the unit of execution
– the unit of scheduling

– the dynamic (active) execution context
• compared with program: static, just a bunch of bytes

• Process is often called a job, task, or sequential
process
– a sequential process is a program in execution

• defines the instruction-at-a-time execution of a program

10/13/03 © 2003 Hank Levy 4

What’s in a Process?

• A process consists of (at least):
– an address space
– the code for the running program

– the data for the running program
– an execution stack and stack pointer (SP)

• traces state of procedure calls made

– the program counter (PC), indicating the next instruction
– a set of general-purpose processor registers and their

values
– a set of OS resources

• open files, network connections, sound channels, …

• The process is a container for all of this state
– a process is named by a process ID (PID)

• just an integer (actually, typically a short)

10/13/03 © 2003 Hank Levy 5

A process’s address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

10/13/03 © 2003 Hank Levy 6

Process states

• Each process has an execution state, which indicates
what it is currently doing
– ready: waiting to be assigned to CPU

• could run, but another process has the CPU

– running: executing on the CPU
• is the process that currently controls the CPU

• pop quiz: how many processes can be running simultaneously?

– waiting: waiting for an event, e.g. I/O
• cannot make progress until event happens

• As a process executes, it moves from state to state
– UNIX: run ps, STAT column shows current state

– which state is a process is most of the time?

2

10/13/03 © 2003 Hank Levy 7

Process state transitions

• What can cause schedule/unschedule transitions?

New

Terminated

Ready

Running

Waiting

create

kill
I/O,

 page fault, etc.

I/O
done

schedule
unschedule

10/13/03 © 2003 Hank Levy 8

Process data structures

• How does the OS represent a process in the kernel?
– at any time, there are many processes, each in its own

particular state

– the OS data structure that represents each is called the
process control block (PCB)

• PCB contains all info about the process
– OS keeps all of a process’ hardware execution state in the

PCB when the process isn’t running
• PC

• SP

• registers

– when process is unscheduled, the state is transferred out of
the hardware into the PCB

10/13/03 © 2003 Hank Levy 9

PCB

• The PCB is a data structure with many, many fields:
– process ID (PID)
– execution state

– program counter, stack pointer, registers
– memory management info
– UNIX username of owner

– scheduling priority
– accounting info

– pointers into state queues

• In linux:
– defined in task_struct (include/linux/sched.h)

– over 95 fields!!!

10/13/03 © 2003 Hank Levy 10

PCBs and Hardware State

• When a process is running, its hardware state is
inside the CPU
– PC, SP, registers

– CPU contains current values

• When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the
PCB
– when the OS puts the process in the running state, it loads

the hardware registers from the values in that process’ PCB

• The act of switching the CPU from one process to
another is called a context switch
– timesharing systems may do 100s or 1000s of switches/s
– takes about 5 microseconds on today’s hardware

10/13/03 © 2003 Hank Levy 11

State queues

• The OS maintains a collection of queues that
represent the state of all processes in the system
– typically one queue for each state

• e.g., ready, waiting, …

– each PCB is queued onto a state queue according to its
current state

– as a process changes state, its PCB is unlinked from from
queue, and linked onto another

10/13/03 © 2003 Hank Levy 12

State queues

• There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

netscape pcb emacs pcb ls pcb

cat pcb netscape pcbhead ptr
tail ptr

Wait queue header

Ready queue header

3

10/13/03 © 2003 Hank Levy 13

PCBs and State Queues

• PCBs are data structures
– dynamically allocated inside OS memory

• When a process is created:
– OS allocates a PCB for it
– OS initializes PCB

– OS puts PCB on the correct queue

• As a process computes:
– OS moves its PCB from queue to queue

• When a process is terminated:
– OS deallocates its PCB

10/13/03 © 2003 Hank Levy 14

Process creation

• One process can create another process
– creator is called the parent
– created process is called the child
– UNIX: do ps, look for PPID field

– what creates the first process, and when?

• In some systems, parent defines or donates
resources and privileges for its children
– UNIX: child inherits parents userID field, etc.

• when child is created, parent may either wait for it to
finish, or it may continue in parallel, or both!

10/13/03 © 2003 Hank Levy 15

UNIX process creation

• UNIX process creation through fork() system call
– creates and initializes a new PCB
– creates a new address space

– initializes new address space with a copy of the entire
contents of the address space of the parent

– initializes kernel resources of new process with resources of
parent (e.g. open files)

– places new PCB on the ready queue

• the fork() system call returns twice
– once into the parent, and once into the child
– returns the child’s PID to the parent

– returns 0 to the child

10/13/03 © 2003 Hank Levy 16

fork()

int main(int argc, char **argv)

{

 char *name = argv[0];

 int child_pid = fork();

 if (child_pid == 0) {

 printf(“Child of %s is %d\n”,

 name, child_pid);

 return 0;

 } else {

 printf(“My child is %d\n”, child_pid);

 return 0;

 }

}

10/13/03 © 2003 Hank Levy 17

output

spinlock% gcc -o testparent testparent.c

spinlock% ./testparent

My child is 486

Child of testparent is 0

spinlock% ./testparent

Child of testparent is 0

My child is 486

10/13/03 © 2003 Hank Levy 18

Fork and exec

• So how do we start a new program, instead of just
forking the old program?
– the exec() system call!
– int exec(char *prog, char ** argv)

• exec()
– stops the current process

– loads program ‘prog’ into the address space
– initializes hardware context, args for new program

– places PCB onto ready queue
– note: does not create a new process!

• what does it mean for exec to return?
– what happens if you “exec csh” in your shell?
– what happens if you “exec ls” in your shell?

4

10/13/03 © 2003 Hank Levy 19

UNIX shells

int main(int argc, char **argv)

{

 while (1) {

 char *cmd = get_next_command();

 int child_pid = fork();

 if (child_pid == 0) {

 manipulate STDIN/STDOUT/STDERR fd’s

 exec(cmd);

 panic(“exec failed!”);

 } else {

 wait(child_pid);

 }

 }

}

