Secondary Storage

- Secondary storage typically:
 - is anything that is outside of “primary memory”
 - does not permit direct execution of instructions or data retrieval via machine load/store instructions

- Characteristics:
 - it’s large: 30-60GB
 - it’s cheap: 40GB Quantum Fireball for $139.95
 - 0.3 cents per megabyte (wow!)
 - it’s persistent: data survives power loss
 - it’s slow: milliseconds to access
 - why is this slow??
Memory Hierarchy

- Each level acts as a cache of lower levels

Disks and the OS

- Disks are messy, messy devices
 - errors, bad blocks, missed seeks, etc.
- Job of OS is to hide this mess from higher-level software
 - low-level device drivers (initiate a disk read, etc.)
 - higher-level abstractions (files, databases, etc.)
- OS may provide different levels of disk access to different clients
 - physical disk block (surface, cylinder, sector)
 - disk logical block (disk block #)
 - file logical (filename, block or record or byte #)
Physical Disk Structure

- Disk components
 - platters
 - surfaces
 - tracks
 - sectors
 - cylinders
 - arm
 - heads

Interacting with Disks

- In the old days...
 - OS would have to specify cylinder #, sector #, surface #, transfer size
 - I.e., OS needs to know all of the disk parameters
- Modern disks are even more complicated
 - not all sectors are the same size, sectors are remapped, ...
 - disk provides a higher-level interface, e.g. SCSI
 - exports data as a logical array of blocks [0 ... N]
 - maps logical blocks to cylinder/surface/sector
 - OS only needs to name logical block #, disk maps this to cylinder/surface/sector
 - as a result, physical parameters are hidden from OS
 - both good and bad
Example disk characteristics

- IBM Ultrastar 36XP drive
 - form factor: 3.5"
 - capacity: 36.4 GB
 - rotation rate: 7,200 RPM (120 RPS, musical note C3)
 - platters: 10
 - surfaces: 20
 - sector size: 512-732 bytes
 - cylinders: 11,494
 - cache: 4MB
 - transfer rate: 17.9 MB/s (inner) – 28.9 MB/s (outer)
 - full seek: 14.5 ms
 - head switch: 0.3 ms

Disk Performance

- Performance depends on a number of steps
 - seek: moving the disk arm to the correct cylinder
 - depends on how fast disk arm can move
 - seek times aren’t diminishing very quickly
 - rotation: waiting for the sector to rotate under head
 - depends on rotation rate of disk
 - rates are increasing, but slowly
 - transfer: transferring data from surface into disk controller, and from there sending it back to host
 - depends on density of bytes on disk
 - increasing, and very quickly
- When the OS uses the disk, it tries to minimize the cost of all of these steps
 - particularly seeks and rotation
Disk Scheduling

- Seeks are very expensive, so the OS attempts to schedule disk requests that are queued waiting for the disk
 - FCFS (do nothing)
 • reasonable when load is low
 • long waiting time for long request queues
 - SSTF (shortest seek time first)
 • minimize arm movement (seek time), maximize request rate
 • unfairly favors middle blocks
 - SCAN (elevator algorithm)
 • service requests in one direction until done, then reverse
 • skews wait times non-uniformly (why?)
 - C-SCAN
 • like scan, but only go in one direction (typewriter)
 • uniform wait times