CSE 451: Operating Systems
Winter 2001

Final Review

Steve Gribble
gribble@cs.washington.edu
323B Sieg Hall

Final Logistics

• Comprehensive: covers entire course
 – lectures, homeworks
 – I won’t ask questions based on projects
• Closed book
• Please don’t cheat
 – no looking at neighbor’s exams
• Wednesday 8:30-10:20am, in this room
Architectural Support

- Privileged instructions
 - what are they, and who gets to execute them?
 - how does CPU know whether to execute them?
 - why do they need to be privileged?
 - what do they manipulate?

- Events
 - exceptions: what generates them? trap vs. fault?
 - interrupt: what generates them?

OS Structure

- What are the major components of an OS?
- How are they organized?
 - what is the difference between monolithic, layered, microkernel OS’s?
 - advantages and disadvantages?
 - which is Linux?
Processes

• What is a process? What does it virtualize?
 – differences between program, process, thread?
 – what is contained in process?
 • what does PCB contain?
 – state queues?
 • which states, what transitions are possible?
 • when do transitions happen?

• Process manipulation
 – what does fork() do? how about exec()?
 – how do shells work?

Threads

• What is a thread?
 – why are they useful?
 – user level vs. kernel level threads?

• How does thread scheduling differ from process scheduling?
 – what operations do threads support?
 – what happens on a thread context switch? what is saved in TCB?
 – preemptive vs. non-preemptive scheduling?
Synchronization

• Why do we need it?
 – data coordination? execution coordination?
 – what are race conditions? when do they occur?
 – when are resources shared? (variables, heap objects, …)
• What is mutual exclusion?
 – what is a critical section?
 – what are the requirements of critical sections?
 • mutex, progress, bounded waiting, performance
 – what are mechanisms for building critical sections?
 • locks, semaphores, (monitors), condition variables

Locks and Semaphores

• What does it mean for acquire/release to be atomic?
• how can locks be implemented?
 – spinlocks? interrupts? OS/thread-scheduler?
 – test-and-set?
 – limitations of locks?
• Semaphores
 – wait vs. signal? difference between semaphore and lock?
 – when do threads block on semaphores? when do they wake?
 – bounded buffers problem
 • producer/consumer
 – readers/writers problem
Process Scheduling

- Long term vs. short term
- When does scheduling happen?
 - job changes state, interrupts, exceptions, job creation
- Scheduling goals?
 - maximize CPU util
 - max job throughput
 - minimize \{turnaround time | waiting time | response time\}
 - if these are on exam, I will define them for you
 - batch vs. interactive: what are their goals?
- What is starvation? what causes it?
- FCFS/FIFO, SJF, SRJF, priority, RR, MLFQ…

Memory Management

- What good is virtual memory?
- Mechanisms for implementing memory management
 - physical vs. virtual addressing
 - partitioning, paging, segmentation
 - page tables, TLB
- Page replacement policies?
- What are overheads related to memory management?
Virtualizing Memory

- what is difference between physical and virtual address?
 - fixed vs. variable partitioning?
 - base/limit registers...
 - internal vs. external fragmentation
- paging
 - advantages, disadvantages?
 - what are page tables, PTEs?
 - what are: VPN, PFN, offset? relationship to VA?
 - what’s in a PTE? what are modify/reference/valid/prot bits?
- segmentation
 - compare/contrast with paging…advantages?
 - what’s in a segment table?
 - how can paging + segmentation be combined? why?

Paging, TLBs

- How to reduce overhead of page table?
 - how do multi-level page tables work?
 - what problem does TLB solve?
 - why do they work?
 - how are they managed?
 - software vs. hardware managed?
- Page faults
 - what is one? how is it used to implement demand paging?
 - what is complete sequence of steps for translating a virtual address to a PA?
 - all the way from TLB access to paging in from disk
- MM tricks
 - shared memory? mmap? COW?
Page Replacement

• what is page replacement algorithm?
 – what application behavior does it exploit?
 – when is page replacement algorithm invoked?
• understand:
 – belady’s (optimal), FIFO, LRU, approximations of LRU, LRU clock, working set, page fault frequency
 – what is thrashing? why does it occur and when?

Disk

• Memory hierarchy and locality
• Physical disk structure
 – platters, surfaces, tracks, sectors, cylinders, arms, heads
• Disk interface
 – how does OS make requests to the disk?
• Disk performance
 – access time = seek + rotation + transfer
• Disk scheduling
 – how does it improve performance?
 – FCFS, SSTF, SCAN, C-SCAN?
Files and Directories

• what is a file
 – what operations are supported?
 – what characteristics do they have?
 – what are file access methods?
• what is a directory
 – what are they used for?
 – how are they implemented?
 – what is a directory entry?
• how does path name translation work?
• ACLs vs capabilities
 – matrix
 – advantages and disadvantages of each

FS layout

• what are file system layouts for?
• general strategies?
 – contiguous, linked, indexed?
 – tradeoffs?
• what is an inode?
 – how are they different than directories?
 – how are inodes and directories used to do path resolution, and find files?
FS Buffer cache

• what is a buffer cache?
 – why do OS’s use them?
• what are differences between caching reads and writes?
 – write-through, write-back, write-behind?
 – read-ahead?

advanced topics

• what is FFS, how does it improve over original unix FS?
• what is RPC?
 – how is it implemented? client-side vs server side stubs?
 – IDL?
 – limitations?
 • is transparency good?
crypto

- symmetric key vs. public key
 - understand: authenticity, confidentiality, integrity, non-repudiation
 - how to send a message securely using symmetric key and public key
 - weaknesses of the protocols
- one-way hash functions
- digital signatures

two-phase commit

- replicas for availability
 - the replica consistency problem
 - how to keep consistent in face of:
 - software and hardware failures
 - network partitions
- two-phase commit protocol
 - prepare phase vs. commit phase
 - how logging fits into the picture
security

- trusted computing base (TCB)
- principle of least privilege
- principle of least common mechanism
- security through obscurity