
Section 8

1 Multiple Linear Regression

So far, we have been considering finding functions f : Rd → R that predict a single continuous value for
linear regression. Concretely, we find a w ∈ Rd predict for a new datapoint x ∈ Rd using the following
function:

f(x) =
[
−w−

]  |x
|

 = wTx

Consider if we wanted to find a function f : Rd → Rk to predict k continuous values instead. Then, we can
simply learn a w vector for each continuous value we we want to predict. We can express this by making
our weights a matrix W ∈ Rk×d Concretely,

f(x) = Wx =


−w1−
−w2−

...
−wk−


 |x
|

 =


wT1 x
wT2 x

...
wTk x


2 Multiple Logistic Regression

In logistic regression, we’re interested in classification, and want to find a function f : Rd → [0, 1]. To achieve
this, we simply wrap our linear regression in a sigmoid function σ(x) = 1

1+exp(−x) .

f(x) = σ(wTx)

The same logic can be applied to multiple linear regression to find a function f : Rd → [0, 1]k to predict k
classes.

f(x) = σ(Wx) =


σ(wT1 x)
σ(wT2 x)

...
σ(wTk x)


3 Learned Feature Maps

We found that feature maps φ : Rd → Rk allow us to fit more complicated functions. Questions arise: What’s
a good feature to include? What’s not a good feature to include? Wouldn’t it be nice if we didn’t have to
hand engineer features and instead learn them? If we made our feature map just multiple logistic regression
we can do that! Concretely, we can learn some Wφ ∈ Rk×d such that

φ(x) = σ(Wφx)

With the above, if we wanted predict r different values using logistic regression as a feature map, our function
f : Rd → Rr would look like the following:

f(x) = W · φ(x) = W · σ(Wφx)

1



We could keep repeating this multiple times (projecting to different feature spaces) and use other elementwise
non-linear activation functions h : R → R instead of sigmoid. For instance, if we wanted to learn function
f : R3 → R4, and decided to stack logistic regression three times using W3 ∈ R4×5,W2 ∈ R5×5,W1 ∈ R5×3,
we get the following

f(x) = W3 · h(W2 · h(W1x))

Visually, we can picture each weight as a connection, and input/output as a node.

Congratulations, we have created a basic fully-connected neural network. (”Multi-Layer Perceptron”)

The above stems an interesting interpretation of neural networks: one can view all the layers before the
final layer as learning features the final layer can use to easily classify/predict a given label. Concretely, we
can interpret the above feature map as

φ(x) = h(W2 · h(W1x))

And us doing a simple logistic/linear regression on that feature map

f(x) = W3φ(x)

The main difference between machine learning and deep learning is that deep learning learns the features

4 Activation (Non-Linearity) Importance

Instead of sigmoid, there are many other activations one could use. Let’s consider why a non-linearity is
necessary. Consider the above example, but instead lets use a linear activation function h(x) = x

f(x) = W3 · h(W2 · h(W1x))

= W3W2W1︸ ︷︷ ︸
(1)

x

= Ax

Note in (1) that there exists a matrix A ∈ R4×3 such that A = W3W2W1, therefore, a neural network
composed of only linear activations can only do as well as simple linear regression!

2



5 Multi Layer Perceptron Forward Pass

Assume there are T layers of the MLP, then let zt denote the tth layer, we can then express the tth layer as

zt = h(Wtzt−1)

where h(·) is the activation function for 2 ≤ t ≤ T − 1, with the exception that

z1 = x

zT = l(y, zT−1)

where x is the input, l is the loss function and y is the target. Writing out this recursive function we have
the following forward pass rule:

ZT = l(y, h(Wt−1 · h(Wt−2 · h(· · ·h(W3 · h(W2 · x)) · · · ))))

6 Backpropagation

An objective of learning the MLP is to

min
W2:T−1

ZT = min
W2:T−1

l(y, h(Wt−1 · h(Wt−2 · h(· · ·h(W3 · h(W2 · x)) · · · ))))

How do we find the the best W2, ...,WT−1 that minimizes the objective above? Stochastic Gradient Descent!
So our real question now lies in computing each of the gradients ∂ZT

∂Wt
for 2 ≤ t ≤ t − 1, so that we can

use them to take our gradient steps. More specifically, we can apply chain rule. First we observe that

∂zT
∂Wt

=
∂zT
∂zt
· ∂zt
∂Wt

=
∂zT
∂zt
· ∂h(Wtzt−1)

∂Wt
= (

∂zT
∂zt
◦ h′(Wtzt−1)) · zTt−1

where A ◦B is the element-wise product of A and B.
Clearly, we also need to compute ∂zT

∂zt
, which by chain rule is:

∂zT
∂zt

=
∂zT
∂zt+1

· ∂zt+1

∂zt
=

∂zT
∂zt+1

· ∂h(Wt+1zt)

∂zt
= (

∂zT
∂zt+1

◦ h′(Wt+1zt)) ·Wt+1

In forward pass, the sequence of computation is

z1, z2, ..., zT

In back-propagation, the sequence of computation by the above recursive relationship becomes

∂zT
∂zT−1

,
∂zT

∂WT−1
,
∂zT
∂zT−2

, ...,
∂zT
∂W2

Theorem: Assuming each addition or multiplication counts as one operation and h takes roughly the same
number operations with h′, then Back-propagation takes at most 5 times the operations than the forward
pass.

7 Footnote: Bias

Everything in this handout can be extended to have a bias. For multiple linear regression, we’d add a bias
term b ∈ Rk and define our prediction function f : as the following:

f(x) = Wx+ b =


−w1−
−w2−

...
−wk−


 |x
|

+


b1
b2
...
bk

 =


wT1 x+ b1
wT2 x+ b2

...
wTk x+ bk


3



Multiple logistic regression can be written as the following:

f(x) = σ(Wx+ b)

The example neural network with biases b1 ∈ R3, b1 ∈ R5, b3 ∈ R4 can be written as the following:

f(x) = W3 · h(W2 · h(W1x+ b1) + b2) + b3

4


