
CSE 446: Machine Learning Winter 2020

Section 6: Naive Bayes
Lecturer: Byron Boots Date 27 Jan 2020

Agenda:

1. Announcements

2. Review Naive Bayes classifier.

Naive Bayes Classifier

Naive Bayes is a probabilistic machine learning algorithm that can be used in a wide variety of classification
tasks. Typical applications include filtering spam e-mails, classifying documents, etc. Today, we will look
at Naive Bayes classifiers in the context of spam classification for e-mails. Let us represent an e-mail, or
any document we wish to classify as either spam or not spam, as the set {x1, . . . , xn} of distinct words in
the text. That is, we desire to compute

P (S | x1 . . . xn).

We write S to denote the event that our document is spam and S to denote the event that our document
is not spam. Then, by Bayes’ theorem we have

P (S | x1 . . . xn) =
P (x1 . . . xn | S)P (S)

P (x1 . . . xn)
=

P (x1 . . . xn | S)P (S)

P (x1 . . . xn | S)P (S) + P (x1 . . . xn | S)P (S)
.

By the chain rule of probability, we can decompose the numerator as

P (x1 . . . xn | S)P (S) = P (x1 | S)P (x2 | x1, S) . . . P (xn | x1 . . . xn−1, S)P (S).

However, this expression can be difficult to calculate. We simplify the problem by making the assumption
that each of the words are conditionally independent of each other if we already know whether the document
is spam or not spam. While this assumption is not true, it does provide a useful relaxation to our problem.
Hence,

P (x1 . . . xn | S)P (S) = P (S)

n∏
i=1

P (xi | S)

P (x1 . . . xn | S)P (S) = P (S)

n∏
i=1

P (xi | S)

Returning to the expression we originally derived from Bayes’ Rule, we have

P (S | x1 . . . xn) =
P (S)

∏n
i=1 P (xi | S)

P (S)
∏n

i=1 P (xi | S) + P (S)
∏n

i=1 P (xi | S)
.

Laplace Smoothing

If a given token and class never occur together in the training data, then the probability estimate for that
token conditioned on that class will be zero. Recall, the probability estimate is directly proportional to the
number of times a given token occurs. Discuss why this scenario is problematic for our classifier and how
an adversarial agent (spam generator) might take advantage of it.

1-1

1-2 CSE 446

One solution is to smooth all our word probabilities upwards by a count of 1. That is, we assume we saw
each token in each token for each class once more than we actually did. Specifically, our probability for
some token u goes from

P (u | S) =
number of spam e-mails containing u

number of spam e-mails

to a smoothed version of

P (u | S) =
1 + number of spam e-mails containing u

2 + number of spam e-mails
.

Similarily,

P (u | S) =
1 + number of ’not spam’ e-mails containing u

2 + number of ’not spam’ e-mails
.

The reason we add 2 to the denominator when we smooth is because any token can take on either take on
the value of belonging to ’spam’ or ’not spam’.

Algorithm

Let V be the set of unique tokens in the training set.

Algorithm 1: Naive Bayes Classifier

for ∀u ∈ V do

Compute and store P (u | S) =
1 + number of ’spam’ e-mails containing u

2 + number of ’spam’ e-mails

Compute and store P (u | S) =
1 + number of ’not spam’ e-mails containing u

2 + number of ’ not spam’ e-mails
end

Compute P (S) =
|’spam emails’|

|’spam’ emails|+ |’not spam’ emails|
and P (S) = 1− P (S)

for each email ∈ test set do
Create set {x1 . . . xn} of distinct words in e-mail, ignoring words not seen in labeled training data.
if P (S)

∏n
i=1 P (xi | S) > P (S)

∏n
i=1 P (xi | S) then

Classify e-mail as ’spam’.
else

Classify e-mail as ’not spam’
end

end

Although we are nearly done, there is one issue of practical concern. Namely, calculating either of the
expressions in the above inequality is likely to cause numerical underflow issues. As you might recall from
lecture, we solve this issue by computing the inequality in the log-space. For two values a, b, we have

a > b⇐⇒ log(a) > log(b).

So,

P (S)

n∏
i=1

P (xi | S) > P (S)

n∏
i=1

P (xi | S)⇐⇒ log(P (S))+

n∑
i=1

log(P (xi | S)) > log(P (S))+

n∑
i=1

log(P (xi | S)).

Now, we simply modify our algorithm by switching the product-based inequality for the log-space inequality.

