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1 The Maximum Likelihood Estimator

In the linear regression lectures, we presented our supervised learning problem in terms of a loss function that
scores our predictions relative to the ground truth as determined by some training data. However, an alterna-
tive view is to think about a probability procedure that might have given rise to the data. This probability
procedure would have some parameters, and our job is to figure out which parameters would assign the highest
probability to the data that was observed. This is the principle of maximum likelihood estimation.

To help us understand this concept more concretely, let’s say that we have N training samples, x1, x2, ..., xN ,
and N labels, y1, y2, ..., yN , where yi is the label of xi. Furthermore, let’s say that each label yi is independently
and identically generated using the equation yi = wTxi + εi, where εi = N(wTxi, σ

2). Mathematically, the goal
of MLE is to find a ŵ that maximizes the probability of the labels, y1, y2, ..., yN , given the inputs, x1, x2, ..., xN .

Recall that the probability density function of the normal distribution whose mean is µ and variance is σ2 is

f(x|µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)

Let’s denote the likelihood of seeing a sequence of labels D. Since the inputs are i.i.d., we know that

D(y1, y2, ..., yN |x1, x2, ..., xN , w, ε1, ε2, ..., εN ) =

N∏
i=1

D(yi|xi, w, εi)

Then,

ŵMLE = argmaxw

N∏
i=1

Pw(yi|xi, w, εi)

= argmaxwlog

(
N∏
i=1

Pw(yi|xi, w, εi)

)

= argmaxw

N∑
n=1

log
(
Pw(yi|xi, w, εi)

)
= argminw

N∑
n=1

−log
(
Pw(yi|xi, w, εi)

)
(1)

According to our normal distribution model, we know that

Pw(yi|xi, w, εi) =
1√

2πσ2
exp

(
− (wTxi − yi)2

2σ2

)
(2)
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Plugging (2) into (1), we get

ŵMLE = argminw

1

N

N∑
n=1

(yi − wTxi)
2

2 Closed-Form Solution

If we think of

• the training data as a large matrix X of size N ×D, where Xn,d is the value of the dth feature on the nth
sample

• the labels as a column vector Y of dimension N

• the weights as a column vector w of dimension D

we could rewrite wMLE as

ŵMLE = argminw

1

N
‖Xw − Y ‖2

For notational convenience, let’s define

L(w) =

N∑
n=1

(yi − w · xi)2 = ‖Xw − Y ‖2

Therefore, now, in order to find ŵMLE , we need to minimize L(w). How do we minimize a function? We take
its derivative and set it to 0!

Recall that, for an arbitrary vector x, its l2-norm can be written as

f(x) = ‖x‖22

=

(( N∑
k=1

xk
2

) 1
2

)2

=

N∑
k=1

xk
2

Then, it follows that

∂

∂xj
f(x) =

∂

∂xj

N∑
k=1

xk
2

=

N∑
k=1

∂

∂xj
xk

2

= 2xj

Then, it follows that

∇f(x) = 2x
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Since Xw − Y is a vector, we see that

∇w

(
L(w)

)
= 2XT (Xw − Y )

= 2XTXw − 2XTY
(3)

Equating (3) to 0, we get

2XTXw − 2XTY = 0

XTXw −XTY = 0

XTXw = XTY

ŵMLE = (XTX)−1XTY

This is the closed-form solution to our linear regression problem.

3 Error Analysis

Now, let’s think about how to evaluate how well our model is doing.

Suppose that yi = xi
Tw + εi, where each εi is drawn i.i.d from N(0, σ2). Then, it follows that

ŵMLE = (XTX)−1XT Ŷ

= (XTX)−1XT (Xw + ε)

= w + (XTX)−1XT ε

Recall that MSEtrain =
∥∥∥Ŷ − Y ∥∥∥2

2
. Therefore,

MSEtrain = E

[∥∥∥Ŷ − Y ∥∥∥2
2

]

= E

[∥∥X(XTX)−1XT ε
∥∥2
2

]

For notational convenience, let’s define
A = X(XTX)−1XT
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Then,

MSEtrain = E
[
‖Aε‖2

]
= E

[
εTATAε

]
= E

[∑
i

(∑
j

εjAi,j

)2
]

= E

[∑
i

∑
j1

∑
j2

εi,j1Ai,j1εj2Ai,j2

]

= E

[(
(Aε)TAε

)
i,j

]
= E

[
Trace(AεεTAT )

]

Notice that E[εεT ] = σ2I. Therefore,

MSEtrain = σ2 Trace(AAT )

Now, what if each error εi is drawn i.i.d. from a Laplace distribution? Recall that the probability density
function for Laplace distribution is

1

2b
exp

(
−
‖x− µ‖L1

b

)

To make the math prettier, let’s assume that µ = 0, in which case the probability density function of the Laplace
distribution becomes

1

2b
exp

(
−
‖x‖L1

b

)

[Exercise]

a. What is ŵMLE under the Laplace distribution?

b. Does ŵMLE have an analytical (closed-form) solution?
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